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Abstract—This paper presents a multi-carrier molecular com-
munication model for astrocyte tissues. The model considers
molecular diversity and analyses channel path loss and capac-
ity for molecular communication based on the concentration
of Inositol Triphosphate (IP3) and calcium (Ca2+) molecules.
Without loss of generality, we investigate the spatiotemporal
concentration of these molecules and how both intracellular
and intercellular signaling dictates signal propagation inside
astrocytes tissues. Astrocytes are the most abundant glial cell
type in the adult brain and play essential roles in brain function,
such as modulating neuronal excitation, inhibition, and synaptic
transmission. Results show that the cooperation between these
two molecules reduce path loss, improves data propagation, and
can be an alternative for data encoding and transmission. The
multi-carrier molecular communication using IP3 and Ca2+ has
overall superior performance, showing the potential benefits of
molecular diversity.

I. INTRODUCTION

Biological systems have inspired promising approaches for
engineering data communication in nanonetworks [1]. The
main example is the natural signaling process of human
body cells, which can exchange information based on the
transmission, propagation, and reception of molecules, through
biochemical and physical processes following the molecular
communication (MC) paradigm. In biological cells, natural
components are similar to parts of data communication sys-
tems, such as transmitters, receivers, encoding, and memory
capacity, among others [2].

Since natural cells exhibit a variety of molecules and their
corresponding pathways, we capitalize on the diversity of
molecules and their relationships to improve performance
and reliability in MC. Moreover, we advocate for molecular
diversity as a leading alternative to achieve low complexity in
multi-user MC systems. Hence, we use the IP3/Ca2+ pathway
and intercellular signaling, which has important functions for
various regulatory purposes, including neuronal transmission,
cell growth, and death.

Fig. 1 illustrates a molecular communication system, high-
lighting the paralleled Ca2+ and IP3 channels, adapted from
principles of multi-carrier systems. In this paper, we present
a multi-carrier molecular communication model for astrocyte
tissues. The model considers the diversity of molecules, where
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Fig. 1: The multi-carrier IP3/Ca2+ signaling based MC System

each type of molecule performs the role of a channel. The
model allows the analysis of the Spatio-temporal concentra-
tion of Ca2+ and IP3 molecules, and how both intracellular
and intercellular signaling dictates signal propagation inside
astrocytes tissues considering principles of a multi-carrier
system. Astrocytes are the most abundant glial cells in the
central nervous system and offer different applications, e.g.,
information processing and synaptic transmission. Astrocyte’s
role in neuroscience is a hot topic holding the hope of
explaining neurodegenerative disease origins.

Our model represents gap junctions connecting astrocytes.
When a gap junction opens, it allows cells to exchange
small molecules with neighboring cells (intercellular com-
munication) [3]. We advance the Exact Stochastic Chemical
Reaction-Diffusion ordinary differential equation (ODE) from
the Gillespie algorithm [4] used for Ca2+ signaling in cellular
tissues [2] to create the multi-carrier communication model
and allow the analysis of molecular path loss and capacity for
the joint use of IP3 and Ca2+. Our analysis follows the model
presented next, being implemented in Python. Our results for
end-to-end capacity and path loss show improvements when
using combined IP3 and Ca2+ molecules compared to the
single-use of Ca2+ or IP3.

The paper proceeds as follows. Section II overviews the
related works. Section III details the Ca2+ and IP3 signaling-
based molecular communication model. Section IV describes
the evaluation method, and Section V discusses the results.
Finally, Section VI concludes the paper.

II. RELATED WORKS

The signaling processes of human body cells can encode
information based on the concentration of Ca2+ molecules,
which is the pioneering work by Nakano and colleagues, where
they presented the first end-to-end model of the Ca2+ signaling



communication system and the effectiveness of on-off-shift
keying (OOK) using concentrations of molecules [5]. Thus,
in [6], the authors investigated, through a set of simulation
experiments, the communication capacity of the Ca2+ relay
channel for a one-dimensional signaling system. That work
was later extended by Barros et al. [2], who have mod-
eled the in-body channel diversity for MC considering three
distinct tissue types of astrocytes, epithelial, and muscular.
They studied the capacity, delay, and intracellular interference
communication behavior in a 3D tissue. In the same work, the
authors also considered the simulation of the gap junctions
and the noise. In [7], the authors presented a channel model
for both intracellular and intercellular Ca2+ signaling and
investigated the bit error probability for binary transmission,
gain, and delay of Ca2+ waves traveling through a 1-D array
of cells. In [8], the authors investigated different network
topologies and their impact on calcium propagation.

Calcium is a very important molecule for the human body.
This molecule controls or modulates different processes in the
body, such as gene expression, neuroplasticity, growth, prolif-
eration, differentiation, and cell death [9]. Many pathologies
have been linked to abnormal IP3/Ca2+ molecules signaling
as they affect the performance of the cells’ natural commu-
nication processes (e.g., heart arrest, ischemia, Alzheimer’s
disease) [10]. In [8], the authors modeled how Alzheimer’s
disease affects astrocyte communications in terms of propa-
gation, path loss, and delay. In [11], the researchers studied
the safety of using Calcium Electroporation. In the treatment,
a short electric pulse applied to the cell creates a temporary
permeability in the cell membrane, which causes a high influx
of intracellular Ca2+ resulting in cancer cell necrosis.

Ca2+ has already been used in adaptive communication
algorithms for nanonetworks [12]. It can extend these to
detect diseases such as Alzheimer’s and others. However,
these works, among others, have followed a single carrier
approach, based only on Ca2+ molecule, which has advanced
researches in molecular communications field, but it still
requires performance improvements [2].

III. THE MULTI-CARRIER COMMUNICATION MODEL

This section details the multi-carrier model for the IP3/Ca2+

signaling process between the cells within astrocyte tissues. It
describes the diffusion model that captures the temporal-spatial
dynamics of intercellular signaling. The next subsections in-
troduce the gap junction model that influences intercellular
diffusion, describe the 3D model of the cellular tissue and
discuss the stochastic model for the scheduling of reactions.

A. The IP3/Ca2+Signaling

We consider a single-hop communication system com-
posed of a transmitter, channel, and receiver. For the sake
of exploring molecular diversity inside cellular tissues and
providing richer mathematical analysis, we compare results
for two different scenarios: (i) independence between IP3

and Ca2+ channels; and (ii) dependence between these two
channels following the natural IP3/Ca2+ information carriers

pathway (Fig. 1). The main entities in the communication
system are transmitter and receiver nanomachines, and the
channel, as described next.

A transmitter nanomachine is a synthetic cell able to
encode data by molecule concentration. It follows an OOK
modulation to transmit molecules in bit 1 periods (with a
certain concentration) and not transmit molecules in bit 0
periods (concentration is zero). We use the IP3/Ca2+ cellular
pathway for dependency, where their values are calculated as
explained next in this section, or we employ pre-define values
for independent transmission, otherwise.

The channel comprises the propagation of IP3 and Ca2+. It
comprises the intracellular and intercellular signaling stages.
Within the cell (intracellular), there are several chemical reac-
tions to regulate Ca2+ concentration. Cell-to-cell communica-
tion (intercellular) occurs when the communicating gates (gap
junctions) in the cells open. IP3 or Ca2+ molecules propagate
through the cytosol, i.e., the liquid that fills the cell cytoplasm.

The receiver nanomachine lies in a synthetic cell that
receives the molecules and decodes the data transported by
them. In the cell, there is a set of receptors responsible for
the distribution and concentration of the received molecules.
Decoding is based on the concentration value with a pre-
define threshold detector. This process is ideal by merit of
simplicity in this paper.

IP3 or Ca2+ signaling in astrocytes supports molecular
propagation, once these cells propagate intercellular Ca2+

molecules up to 100µm in response to IP3 stimuli [13].
Intercellular signaling propagates Ca2+ molecules across the
entire cellular tissue; whereas intracellular signaling can gen-
erate and/or amplify Ca2+ concentration in the cytosol. The
mesostopic-type of diffusion of Ca2+/IP3 molecules is medi-
ated by gap junctions that connect the cytosol of two cells.

We take as basis the work in [14] to describe Ca2+

oscillations in astrocyte cells. The model considers storage
areas (pools); the variation of Ca2+ concentration in the
cytosol (Ccy) (1); the variation of Ca2+ concentration in the
endoplasmic reticulum (Cer) (2); and the variation of IP3

concentration (IP ) (3). We detail equations next.

dCcy

dt
= X0 − k0Ccy +X1 −X2 + lf , (1)

dCer
dt

= X2 −X1 − lf , (2)

dIP

dt
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X0 is the concentration of Ca2+ in the flow from the
extracellular space to the cytosol; and k0Ccy is the baseline
rate of Ca2+ in the outward flow from the cytosol to the
extracellular space. lf (i.e., Ccy − Cer) is the leak flow rate
from the endoplasmic reticulum (ER) to the cytosol; and
IPKdeg is the rate of IP3 degeneration per second. The values
for these parameters are based on experimental measurements
presented in [15].

The term X1 (4) models the Ca2+ flow rate from the ER
to the cytosol under IP3 stimulus. This mechanism directly
affects the cytosolic concentration of Ca2+. M3 is the maxi-
mum value for the Ca2+ flux into cytosol; kA and kI relate,
respectively, to the activation and inhibition factors for IP3; k2

and kIP are threshold constants; and m and n are regular Hill
coefficients. In molecular biology, Hill coefficients describe
the level of cooperation between two biological processes
(e.g., IP3 activation and inhibition; Ca2+ inward and outward
flux). A coefficient of 1 indicates complete independence;
whereas a value greater than 1 indicates positive cooperation.

The Hill coefficient values employed in this study follow
the same approach from [14], validated through experimental
measurements. X2 (5) models the efflux of Ca2+ from the
sarco(endo)plasmic reticulum to the ER. M2 is the maximum
flux of Ca2+ in this process. Finally, X3 (6) describes IP3

generation by the Phosphoinositide phospholipase C (PLC)
protein, where Mp is the maximum Ca2+ flux in this process,
k the saturation constant for the cytosolic Ca2+ concentration,
and p is a Hill coefficient.

B. Gap Junction Model
A single gap junction gate is formed by two cylindrical

particles (connexons), one in each connecting cell (Fig. 2).
Each connexon comprises six proteins, called connexins. We
follow the stochastic model for gap junction behavior in-
troduced in [3]. The model represents voltage-sensitive gap
junctions with two states of conductance for each connexin:
open meaning high conductance, and closed low conductance.

Fig. 2: (a) Individual gap junction view, and (b) two adjacent
cells connected via gap junctions

We observe four possible combinations for all states of each
connexon: (1) state g1 – both connexon in the communicating
cells are in a high conductance; (2) state g2 – the first
connexon is in a high conductance state and the second is
in a low conductance; (3) state g3 – first connexon is in a low
conductance state and the second is in a high conductance;
and (4) state g4 – both connexons are in a low conductance.

However, once experimental validation of this model in-
dicates a very low occurrence of the g4 state [16], it is not
considered in this work. Thus, the probabilities of the states
should follow P(g1) + P(g2) + P(g3) = 1. Moreover, g1, g2 and
g3 are interrelated as follows:

dg2
dt

= β1(ϑj)× g1 − ξ1(ϑj)× g3, (7)

dg3
dt

= β2(ϑj)× g1 − ξ2(ϑj)× g2, (8)

The control of the gap junctions permeability is mediated
by the voltage difference (ϑj) between two adjacent cells
membrane. ξ is the gate opening rate, and β the gate closing
rate. The terms ξ1(ϑj), ξ2(ϑj), β1(ϑj), β2(ϑj) are defined as

ξ1(ϑj) = λe−Aξ(ϑj−ϑ0), (9)

ξ2(ϑj) = λeAξ(ϑj−ϑ0), (10)

β1(ϑj) = λeAβ(ϑj−ϑ0), (11)

β2(ϑj) = λe−Aβ(ϑj−ϑ0), (12)

where ϑ0 is the voltage of the gap junction at which ξ = β.
λ, Aξ and Aβ are constants indicating the responsiveness of
a gap to its voltage.

C. Diffusion Model

The molecular diffusion (13) follows a model that captures
the Spatio-temporal dynamics of intercellular signaling based
on mesoscopic diffusion principles [6].

Z∆(i, j, k, n,m, l) = Dθ
v (| Zn,m,l − Zi,j,k|).{P (g1), P (g2), P (g3)}, (13)

where Z∆(i, j, k, n,m, l) is the difference of molecular con-
centration between a pair of neighbors cells, being i, j, k the
position of the transmitter cell; and n,m, l the position of the
receiver cell. This value follows Dθ

v (| Zn,m,l−Zi,j,k|), where
D means the molecular diffusion coefficient for Ca2+ or IP3;
v is the astrocyte volume; (|Zn,m,l −Zi,j,k|) is the difference
in the concentration of molecules between transmitter and
receiver cells. As we focus on the diffusion process of the
Ca2+ or IP3 molecules through the gap junctions, the proba-
bilities {P (g1), P (g2), P (g3)} assume the open and close rates
for each connexon, selected by the stochastic model and based
on the states g1, g2 and g3 specified in Subsection III-B.

D. 3D Astrocyte Tissue Model and Stochastic Solver

We consider a cellular tissue with an area (A) composed
of cells following a three-dimensional grid organization, as
illustrated in Fig. 3. The indexes i, j and k indicate the position
of a cell ci,j,k in the 3D grid, where i ranges from 1 to I; j
from 1 to J ; and k from 1 to K. In Fig. 3, P1 is the flow of
IP3 or Ca2+ from the cytosol into the extracellular space, and
P2 the diffusion of Ca2+ from the ER to the cell cytosol. The
model for connections between cells follows the study of the
topologies found in astrocyte tissues [17].



Fig. 3: 3D tissue with the intra-intercellular processes

The Exact Stochastic Chemical Reaction-Diffusion ODE
solution from the Gillespie algorithm leads the dynamic in-
tracellular/intercellular concentration. The ODE-based simu-
lations produce accurate variability of the chemical reactions
and serves to study noise effects caused by inherent stochastic
behavior [6]. Our stochastic mathematical framework executes
a Gillespie algorithm at each time step to select a random
cell. It chooses a random internal reaction for the cell and
schedules a time step (t) to that reaction. The execution of
each reaction (R) follows a two-phases scheduling process:
(i) selecting a reaction; and (ii) selecting a time step. Each
reaction is allocated to a reaction constant (ar). Considering
that τ0 is the sum of all ar of R, the next reaction chosen (ru)
is given by (14).

ru = MAX

{
arj
τ0

=
arj∑|R|
j=1 arj

}
. (14)

The reaction selection is based on the roulette wheel
function, which is a biased process based on the reactions
probability values. However, a roulette wheel selection (u)
must satisfy (15).

u−1∑
j=1

τrj
τ0

< ρ1 ≤
u∑
j=1

τrj
τ0
, (15)

which ρ1 is a binary uniform random variable. We compute a
time lapse (δt) at each time step (t) based on the initial τ0 as

τ0.δt = 1n
1

ρ2
, (16)

which ρ2 is another binary uniform random variable. The
end condition is

∑|T |
t=0 δt < t0, where T is the t set and t0

is the pre-defined simulation time. Reactions are then time-
varying variables based on the pool values changing, i.e.,
according to the differential equations. A pre-defined reaction
changing constant influences the set of values based on the
positive or negative result of the reaction. Regarding to inter-
cellular reactions, ar is replaced by Z∆, as observed in (13).

IV. EVALUATION

This section follows two subsections that, respectively,
present the analyses over end-to-end channel path loss and
end-to-end information capacity of the multi-carrier molecular
communication. Our analysis follows the model presented
in Subsection III-A, which is implemented in Python. For
simulations, we define parameter values based on experimental
results from the literature [3], [14], [15], [18], [19]. Table I
resumes the parameters values.

TABLE I: Simulation parameters

Variable Value
Ca 0.1µM
Ea 1.5µM
Ia 1.44µM
σ0 0.05µM
ko 0.5s−1

kf 0.5s−1

kd 0.08s−1

ΣM2 15µM/s
Σp 0.05µM/s
kp 0.3µM
n 2.02
kC1 0.15µM
kC2 0.15µM
ΣM3 40.0s−1

m 2.02
D 350µm2/s
DIP3 280µm sec−2

λ 0.37
ϑj mV 90
ϑ0mV 60
Aγ(mV−1 ) 0.008
Aβ(mV −1) 0.67

A. End-to-End Channel Path loss

In MC, molecules may not arrive at the receiver due to their
diffusion direction probability in gap junction channels (13).
We employ channel path loss (17) to study this behavior.

Γ(f) = 20log10

(
ΓT (f)

ΓT0(f)

)
, (17)

where ΓT (f) and ΓT0(f) are the average peak and the
initial peak of molecules, respectively, and (f) represents
the frequency in hertz (Hz). Eq. 17 calculates the path loss
for one individual molecule (ΓIP3(f) or ΓCA2+

(f)). Hence,
when using multi-carriers, we obtain the total path loss by
Γtotal = ΓCa2+

+ ΓIP3 + γ, considering that the channel
depends on both molecules and γ is a system noise. Then,
by the sum of logs, Γtotal follows (18).

Γtotal =

(
20log10

(
ΓCa

2+

T (f)

ΓCa
2+

T0
(f)

))
+

(
20log10

(
Γ
IP3
T (f)

Γ
IP3
T0

(f)

))
+ γ, (18)

where ΓCa2+

T (f) and ΓIP3

T (f) are the average peak concentra-
tion of Ca2+ and IP3, respectively; ΓCa2+

T0
(f) and ΓIP3

T0
(f) are

the initial peak of molecules for Ca2+ and IP3, respectively. γ
is the system noise factor satisfying (19).

γ =

{
0 ,when IP3 ⊥⊥ Ca2+,
N(µ = 0, X2

1 )|dB ,when IP3 6⊥⊥ Ca2+,
(19)

where ⊥⊥ represents independence and 6⊥⊥ no independence
between the two types of molecules, respectively. N(µ,X2

1 )
is a normal distribution, with mean µ and variance X2

1 .
Thereby, we check if the receiver after an eight-cells distance
measures the same concentration as the sum of the two
output values corresponding to a single molecule, transmitted
independently without noise.



B. End-to-End Information Capacity

To investigate the end-to-end information capacity, we de-
fine the state transition probabilities for the receiver (Rx)
and transmitter (Tx). For Tx, we consider: (i) the release
of molecules (x = x1) and (ii) silence (x = x0). For Rx,
we consider another two states: (i) active, i.e., when the
number of received molecules changes a cell state (y = y1),
or (ii) inactive (y = y0).

We assume a full synchronization of Rx and Tx. This
assumption is common in the literature [6] and it is justified
due to the high values for the employed discrete time-slots
(Tb). Greater values for Tb enable a superior synchronization
time when compared to other communication systems. The
Shannon’s entropy is a reliable measure of biological infor-
mation capacity [20]. Also, the conditional entropy is defined
based on the joint distribution, and the conditional distribution
of x and y follows (20).

H(X|Y ) =
∑
xεX

∑
yεY

p(x, y)log2p(x|y), (20)

where Y = {y0, y1}, and all the remaining probabilities are:

p(x) = p(x = x0) + p(x = x1) (21)

p(y) = (p(y = y0) + p(y = y1)) ∗ p(y|x) (22)

p(y = y0 | x = x0) = 1− p(y = y1| | x = x0) (23)

p(y = y0|x = x1) = 1− p(y = y1|x = x1) (24)

To analyze the amount of transmitted data, we use the mu-
tual information I(X;Y ). p(x) and p(y) are the probabilities
of Tx and Rx states, respectively. Once the transmission period
is relatively large and the effects of memory on the next bit
transmission are reduced, we assume a memoryless channel.
I(X;Y ) is based on the entropy H(.), and capacity follows
(25). To calculate independence between the molecules, the
probability of a bit transmission is the same for IP3 and Ca2+.
We did not carry a detailed noise characterization and filtering
from the information carrier, which implies that the capacity
values tend to be close to a lower bound.

C(X;Y ) = maxp(x)I(X;Y ) =
∑
yεY

∑
xεX

p(x)p(y | x)log2
p(y|x)
p(y)

. (25)

V. RESULTS

Fig. 4 shows the simulation results for Tx and Rx con-
centrations versus time. Results are for a 3 x (3 x l) x
(20 x l) (µm) astrocyte tissue and l represents the length
of each cell. In Figs. 4a and 4b, the Rx concentration is
500nM, the Tx initial concentration is 2 × 103nM for both
molecules and the distance is 8 cells. The natural oscillation
frequency of the concentration levels in astrocytes is 0.1Hz.
The amplitude of oscillations is 2.5 µm for IP3 and 0.6 µm for
Ca2+ measured by the maximum level of molecules. Based on
the concentration levels alone, one observes different behaviors
in Figs. 4a and 4b. A meaningful observation lies in how the
IP3 affects the intracellular Ca2+ signaling. IP3 stimulation
promotes an increase in Ca2+ concentration. IP3 molecules

(a) Tx (b) Rx

Fig. 4: Tx and Rx concentration

stimulate the Ca2+ production for a few more seconds, even
when the last IP3 molecule has already reached Rx.

In Fig. 5, results are for a 3 x (3 x l) x (20 x l) (µm)
astrocyte tissue. For Ca2+, the Tx concentration is 2×103nM,
and the Rx concentration is 1×105 nM. For IP3, the Tx initial
concentration is 2 × 103nM and the Rx concentration is of
6 × 105nM. We increase the oscillation frequency to 1kHz
to highlight the difference between the encoded bit 0 and 1,
and its impact on capacity values. The pure Ca2+ propagation
(Fig. 5) presents a higher path loss than IP3 alone or when it is
employed in conjunction with Ca2+. As the distance between
Tx and Rx increases, the path loss of the channel also increases
for all combinations (Ca2+, IP3, IP3 ⊥⊥ Ca2+, IP3 6⊥⊥ Ca2+),
affecting performance. This result is explained by the diffusion
mechanism in astrocyte cells (13), once their gap junctions
are often in a high conductance state, allowing a high flow
of molecules, which in turn, negatively affects propagation.
Comparing Ca2+ and IP3 path losses using single carrier and
cell-distances ranging from 1 to 8, results show a smoother
path loss for IP3 when the evaluated distance comprise 2
to 6 cells and slight higher stability than Ca2+ along the
entire path. When we use these molecules simultaneously
(both in an independent or not independent way), we achieve
a lower path loss in transmission, however an undesirable
perturbation on the received molecular concentration may
occur. This perturbation acts as a noise, represented by γ
when IP3 6⊥⊥ Ca2+. As shown in Fig. 5, this noise negatively
influences how molecules propagate.

Fig. 6 presents results for the end-to-end capacity versus the
distance (in number of cells) for a 3 x (3 x l) x (20 x l) (µm)
astrocyte tissue. For Ca2+, the Tx concentration is 2×103nM,
and Rx concentration is 1 × 105 nM. For IP3, the Tx initial
concentration is 2 × 103nM and the Rx concentration is of
6 × 105nM. We increase the oscillation frequency to 1kHz
to highlight the difference between the encoded bit 0 and
1, and its impact on capacity values. Rx activation relies
on two variables: the concentration of received molecules
by the external stimulus and the internal concentration of
molecules. When the molecules distance themselves from
Tx, their concentration reduces. Ca2+ is the most affected
by distance. However, the diffusion process overcomes it, as
well as the internal Ca2+ regeneration processes, due to the
influence of IP3. This fast propagation leads to a low internal
concentration of Ca2+, while the high diffusion coefficient



Fig. 5: End-to-end path loss as a function of the distance

Fig. 6: End-to-end capacity as a function of the distance

causes a propagation that allows better performance over
short distances. IP3 presents low capacity values. However,
it is stable for longer distance (seven cells). The use of both
molecules improves performance.

Compared to the performance of pure Ca2+ molecules or
pure IP3, the results show that IP3 has better performance
in path loss and its propagation travels much faster. Besides
that, the multi-carrier molecular communication using IP3 and
Ca2+ has overall superior performance. The cooperation be-
tween molecules reduces path loss, improves data propagation,
and can be an alternative for data encoding and transmission.

VI. CONCLUSION

Molecular short range communication based on Ca2+ sig-
naling in cellular tissues is a promising approach for in-
vivo communication. This communication is necessary for
the design of biological nanonetworks. Hence, this paper
contributes with a multi-carrier MC model benefiting from
molecular diversity in astrocyte tissue, a prominent type of
cell that plays an important role to the neural system. The
model allows to study the use of IP3 and Ca2+ molecules
as carriers and their behavior for end-to-end communication.
Our results suggest that the cooperation between these two
channels, i.e., IP3 and Ca2+, can improve data encoding and
transmission compared to their individual use (single carrier).
As future work, we intend to explore the behavior of the multi-
carrier model in different tissues as well as other molecular
information carriers.

REFERENCES

[1] I. F. Akyildiz, M. Pierobon, S. Balasubramaniam, and Y. Koucheryavy,
“The internet of bio-nano things,” IEEE Commun. Magazine, vol. 53,
no. 3, pp. 32–40, 2015.

[2] M. T. Barros, S. Balasubramaniam, and B. Jennings, “Comparative end-
to-end analysis of ca 2+-signaling-based molecular communication in
biological tissues,” IEEE Trans. on Communications, vol. 63, no. 12,
pp. 5128–5142, 2015.

[3] S. Baigent, J. Stark, and A. Warner, “Modelling the effect of gap junction
nonlinearities in systems of coupled cells,” J. of theoretical biology, vol.
186, no. 2, pp. 223–239, 1997.

[4] D. T. Gillespie, “Exact stochastic simulation of coupled chemical
reactions,” The journal of physical chemistry, vol. 81, no. 25, pp. 2340–
2361, 1977.

[5] T. Nakano, T. Suda, T. Koujin, T. Haraguchi, and Y. Hiraoka, “Molecular
communication through gap junction channels:system design, experi-
ments and modeling,” in IEEE Bionetics, 2007, pp. 139–146.

[6] T. Nakano and J.-Q. Liu, “Design and analysis of molecular relay
channels: An information theoretic approach,” IEEE Trans. on NanoBio-
science, vol. 9, no. 3, pp. 213–221, 2010.

[7] A. O. Bicen, I. F. Akyildiz, S. Balasubramaniam, and Y. Koucheryavy,
“Linear channel modeling and error analysis for intra/inter-cellular ca
2+ molecular communication,” IEEE transactions on nanobioscience,
vol. 15, no. 5, pp. 488–498, 2016.

[8] M. T. Barros, W. Silva, and C. D. M. Regis, “The multi-scale impact of
the alzheimer’s disease in the topology diversity of astrocytes molecular
communications nanonetworks,” IEEE Access, 2018.
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