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Abstract—Glioblastoma Multiform (GBM) is known as one of
the most malignant tumours in the brain, and challenges remain
in developing effective therapeutic solutions. This paper addresses
an open-loop control molecular communication system using an
adaptive algorithm that controls engineered induced Neural Stem
Cells (iNSCs) to release therapeutic exosomes for treating GBM.
The adaptive algorithm is based on the Lotka-Volterra Predator-
Prey model, and virtually monitors the tumour growth from
an external Brain-Machine Interface to control the release of
the exosomes for the treatment. We developed the model to
incorporate the control from an external RF signal that controls
the production of exosomes as well as the diffusion propagation
of exosomes through a 3D simulated Extracellular Space tissue.
Based on numerical analysis coupled with simulations, we found
that factors such as stochastic propagation of exosomes influence
the aggressiveness of the model to tackle the tumour. This
work can lay the foundation for future adaptive Brain-Machine
Interface that controls molecular communication system for
GBM treatment.

Index Terms—Lotka-Volterra Predator-Prey, Control Theory,
Exosomes, Glioblastoma, Molecular Communications, Theranos-
tics.

I. INTRODUCTION

The field of Theranostics (therapy + diagnostics) has been
advancing rapidly in the past few years, and has provided
a new alternative for the treatment of various diseases. The
newly emerging field of molecular communications can play
a major role in theranostics, where it aims to create engineered
biological-based communication systems that can be im-
planted into the human body [1]. Example applications of such
a system, and is the focus of this paper, is for systemic and
targeted drug delivery for brain tumour known as Glioblas-
toma Multiform (GBM). These introduced engineered bio-
nanomachines, which are part of the molecular communication
system, can be controlled to release therapeutic molecules
against the tumor, where they can be engineered from induced
Neural Stem Cells (iNSCs). These bio-nanomachines, herein
defined as therapeutic organoids are designed to function as
a transmitter, responding to activation by an external signal
to Exosomes that serve as extracellular vesicles to transport
therapeutic molecules [2].

There are many mathematical models in the area of targeted
drug-delivery and its impact on tumour, which are based on
population modelling. These models describe the relationships
between the physiological structure of the tumour that is under
the exposure of the drug molecules [3] [4]. The population-

based models offer a means to increase understanding of the
complex dynamics of cellular functions that involves numerous
biochemical, mechanical, and biophysical factors [3]. Targeted
cancer drug-delivery using exosomes is promising for cancer
treatment, attributed to their organotropic properties. Tumor-
derived exosomes, for example, can target and reach cancer
cells to deliver the drug or the therapeutic molecules, behaving
as tumor-homing carriers of the drug [5]. Another fundamental
property of the exosomes as ideal solutions for targeted
drug-delivery is their composition, as extracellular vesicles
(EVs), where they can encapsulate host cell-derived proteins
or nucleic acids to be delivered to the target cells. The recipient
cells can receive the EVs either by receptor-ligand interactions
or receptor-mediated endocytosis [4],[2]. Advanced Brain-
Machine Interface (BMI) systems of the future can control
the production of exosomes using an adaptive algorithm that
controls the iNSCs from an external device.

In this work, we present an adaptive algorithm that controls
the molecular communication exosome transport through the
Extracellular Space (ESC) tissue using the Lotka-Volterra
Predator-Prey population model [6]. The algorithm will be
placed on an external BMI device and will virtually model
the treatment process while controlling the release of the
exosomes for the treatment, representing an open-loop control
system. Our motivation for using the Predator-Prey model is
its equivalence to the therapeutic organoids functioning as a
predator while the glioblastoma tumor cells represent the prey.
The dynamics are defined by the growth and regression of the
tumor as a function of the exosomes transmitted through the
molecular communication system.

The paper is organized as follows. In section II, the math-
ematical model for the interactions between the exosomes
and the glioblastoma tumor cells are formulated based on
the Lotka-Volterra predator-prey model. Our proposed adap-
tive algorithm is presented in section III, introducing the
mathematical descriptions for the external control signal, and
the addition of a proportional controller. Section IV presents
the simulations for the adaptive algorithm. Lastly, section V
presents the Conclusion.



II. EXOSOME-BASED MOLECULAR COMMUNICATION
SYSTEM MODEL: A PREDATOR-PREY FORMULATION

The interactions between the iNSCs, exosomes and the
glioblastoma can be represented as a molecular communi-
cation system, as illustrated in Fig. 1. The iNSCs represent
the transmitter, releasing the exosomes or the therapeutic bio-
nanomachines through the brain ECS, which in this case is
the propagation channel. The target of the exosomes will be
the GBM that serves as the receiver in this communication
system. As shown in Fig. 1 the external BMI device will emit
a Radio Frequency (RF) signal in order to interact with the
iNSCs to trigger the release of the exosomes, acting as the
control input in the molecular communication system.

Fig. 1: Diagram of the Molecular Communication system of
iNSC releasing the exosomes to the GBM, where the iNSC
are controlled from an external RF signal.

The Predator-Prey model [6] represents the dynamic inter-
actions between iNSCs and the glioblastoma tumor, where
this relationship is based on the dependency of the growth or
regression of the tumor to the rate of increase or decrease of
the exosomes being released by the iNSCs. This is determined
by the adaptive control algorithm of the Predator-Prey model.
The Predator-Prey model can be described mathematically as
follows [6]:

dG

dt
= aG− bE, (1)

dE

dt
= σEG− dE, (2)

where G represents the number of glioblastoma tumor cells
(prey population); E represents the number of exosomes
(predator) being released from iNSCs; a represents the growth
rate of the glioblastoma tumor cells, b is the aggressiveness
rate of the predator population or in this situation, the ex-
osomes efficiency in killing the tumor cells; σ represents
the signalling factor or the parameter associated with the
increase of exosomes due to the contributions resulted from
the interactions between the exosomes and the glioblastoma,
and d is the death rate of the predator population, which in
this case means the rate of loss or half-life of exosomes.
A. Steady-State Scenario

According to [7], we can find the steady-state where the
tumor will remain stable, not growing nor shrinking in size,

and the number of exosomes will also stay the same with no
net changes. The steady-state case can be described as follows

dG

dt
= aG0 − b0E0 = 0;G0 = 1; b =

a

E0
. (3)

The same can be described for the number of exosomes in the
steady-state scenario:

dE

dt
= σ0E0G0 − dE0 = 0, (4)

where σ0 = d. The constant values will then be used as initial
conditions for the simulations of the Eq. (1) and Eq. (2) as
shown in the following section.

B. Parameters Estimation

In this paper, we will focus specially on the influence of
the σ parameter, since it is our control signal, defined by the
contributions due to the interactions between the exosomes and
the glioblastoma cells, that will be determined by the ECS
channel and this will affect the quantity of exosomes to be
released. The other initial parameters will be estimated from
experimental observations, similar to the approach in [7].

1) Estimation of the growth rate of the glioblastoma tumor:
Stensjøen et al. [8] was able to show that the growth rate of the
glioblastoma tumor has a median of 1.4% per day, doubling
its equivalent volume every 49.6 days. This growth rate can
be represented as follows

dG

dt
= aG. (5)

In this case we consider that there is no exosomes killing the
tumor. The solution for this first-order differential equation is
represented as

G(t) = eat. (6)

If we double the time t = t2, the relationship is represented
as follows

2 = eat2 ; a =
ln(2)

t2
, (7)

and therefore a = 0.69/t2. Knowing that the volume of the
tumor will double its volume every 49.6 days, we will have
the growth rate a = 0.69/49.6, which results in approximately
1.4% per day.

2) Initial values for glioblastoma tumor cells, G0, and
exosomes, E0: In order to normalize the Eqs. (1)(2), let
G = G/G0, where G0 is the initial number of glioblastoma
tumor cells or can also represent the total size, and let
E = E/G0 represent the number of exosomes relative to
the tumor cells. Therefore, the initial tumor cell count will
be G0 = 1. The parameter E0 represents the relative density
of exosomes compared to the tumor cells.

The research on exosomes has been advancing at a fast
pace offering promising solutions in the area of precision
medicine and cancer therapy and diagnostics, with exosomes
being considered as liquid biopsies for cancer detection and
monitoring [9]. However, the identification of exosomes in
terms of concentration is still not very precise, mostly due to



their nanoscale sizes (30 − 100 nm). Nevertheless, exosomes
can be identified and characterized biochemically through the
identification of exosome-specific markers such as tetraspanins
(CD63, CD81, CD9), antigen presentation molecules (MHC I
and MHC II) [10]. In this study, we will consider an arbitrary
value for the relative number of exosomes compared to the
tumor cells to be E0 = 1/100 or E0 = 0.01, a similar
approach was taken by Babbs et al. [7] with their model on
immune and tumor cells.

3) Estimation of Aggressiveness Rate b: According to the
steady-state scenario previously described, aggressiveness rate
b is defined by the Eq. (4), where b = a/E0. The growth rate of
the tumor, a, is 1.4% per day or a = 0.0014, and the relative
density of exosomes, E0 = 0.01, which leads to the value of
b = 0.14. This value means that 0.14 tumor cells are killed
per exosome per day.

4) Estimation of death rate d of predator population: There
are many studies attempting to analyze all the applications
that can be performed with exosomes in the field of precision
medicine or targeted drug delivery. One of the main challenges
in this area is to prolong the half-life of the exosomes for
specific applications [2]. It has been observed that the half-
life of exosomes is dependent on the application and the
localization in the body. In humans, the half-life of exosomes
is region-specific, meaning that if they were injected in the
bloodstream, it would have a half-life shorter compared to the
brain ECS. In this work, we will consider the half-life of the
exosomes for this application to be one day.

In order to determine the parameter d, we have to analyse
Eq. (2) without any increase or stimulation. Hence Eq. (2),
will become dE/dt = −dE, which can be turned into
E = e−dt. In order to determine the half-life, the equation
becomes 1/2 = e−dt1/2 , and this can be transformed into
d = ln(2)/t1/2. Applying the value for the half-life into d,
gives the result of approximately 0.7, or d = 0.7.

TABLE I: Parameters of the model and its respective values

Parameter Initial values
G0 1
E0 0.01
a 0.0014 days−1

b 0.14 days−1

c 0.7 days−1

d 0.1 days−1

III. ADAPTIVE CONTROL ALGORITHM

The dynamics of the glioblastoma tumor growth or remis-
sion as well as the number of exosomes are based on the
Predator-Prey system as described in the previous section.
As observed, the behavior of the system depends on the
parameters of Eqs. (1) and (2), which are biological models
not linked to external signals. However, for the application of
this work, having an external RF signal interacting with the
iNSCs, making these cells release more exosomes to target
the glioblastoma tumor cells, means that the σ parameter that
represents the contribution factor to E due to the interactions

between the glioblastoma and the exosomes can be controlled.
Consequently, the population of exosomes will increase or
decrease depending on the external input, according to the
Eq. (8).

For our adaptive control algorithm, we are using an open-
loop control system illustrated in Fig. 2, since we are not
using a feedback response or signal in order to adjust the
control signal. The control system will analyze the behaviour
of the model with the input of a control signal and determine
a more efficient way of eradicating the tumor, and therefore,
an open-loop control system is established. There will be two
cases to be considered. The first assumes that the parameter
σ can be modified by the application of the external input
into the system, thus having different outcomes by controlling
σ. The second case takes into consideration all variables in
the Eqs. (1), (2) to be independent of external inputs, and
therefore cannot be modified by such external input. In this
case, the controller input will be added into the system by
the introduction of another variable, which is the proportional
controller kp, and this will determine the increase in the
exosomes population by the Amplitude Modulation of such
input.

Fig. 2: Open-loop control system.

1) Case 1: Adaptive σ from external signal: As observed
in the Fig. 1, the exosomes will be released through the
interaction of the iNSCs and the external RF signal. The
adaptive control algorithm aims to use the parameter σ by
changing the concentration of exosomes in the brain ECS
through the modulation of the amplitude of the external signal
to interact with the iNSCs. The Eqs. (8)-(11) below describe
the RF signal that will interact with the iNSCs, having the
concentration as a function of the amplitude modulation of the
external signal, the proportional controller or input, kp, and the
new value of the parameter σ dependent on the function of the
signal input.

S(t) = Asin(ωt), (8)

c′(t) =
A

Amax
c(t), (9)

kp =

∣∣∣∣( c′(t)

cmax(t)
η

)
σmax − σ

∣∣∣∣ , (10)

σ′ = kp+ σ. (11)

The value of σmax is assumed to be the maximum value or
a threshold, that the variable σ can take given the biological
limitations of the system. For the simulations in this paper,
an arbitrary value of approximately three times the value of
σ in the equilibrium state was chosen, hence σmax = 2. The
variable c′ represents the concentration of exosomes in the
ECS as a function of the amplitude modulation and cmax

represents the maximum concentration when the maximum



amplitude is being emitted by the external signal. The value
of η represents a proportional constant connecting the ratio of
the concentration of exosomes and their influence on σmax.
If η = 1, for example, the ratio between the concentration
of exosomes will represent the exact fraction of σmax. The
variable A represents the value of the amplitude of the signal,
and Amax represents the maximum amplitude that can be
emitted.

Our proposed open-loop control system requires an input
signal into the Molecular Communication system with its
dynamics defined by the Eqs. (1) and (2). The input of the RF
signal will be determined by σ as the parameter to control,
and the adaptive changes in the virtual tumour model will
determine the adaptations of σ.

Substituting Eq. (10) and Eq. (11) into Eq. (2) will result
as follows

dE

dt
=

(∣∣∣∣( c′(t)

cmax(t)
η

)
σmax − σ

∣∣∣∣+ σ

)
EG− dE, (12)

or simply
dE

dt
= σ′EG− dE. (13)

2) Case 2: Constant σ: In this scenario, all the parame-
ters in Eq. (1) and Eq. (2) are biologically dependent. The
parameter σ, in this case, is associated with the signalling
factor due to the interactions between the exosomes and
glioblastoma. This could represent feedback given by such
interactions that could be used in a closed-loop control system
to fine-tune the controller and consequently, the release of
exosomes into the system. In our open-loop control system,
we consider how the controller will influence the outcome and
make it more efficient in this case for constant values of the
parameter σ. Taking this into consideration, we use the same
principles of control theory to add a proportional controller to
control the exosomes production based on Eq. (10) and (15).
The production of exosomes will depend on the amplitude
modulation of the RF signal, aiming to control the output of
the system that corresponds to the size of the glioblastoma or
the total number of tumor cells. Eq. (14) below, describes the
insertion of the proportional controller, kp, into the Eq. (2)

dE

dt
= σEG− dE + kpE, (14)

The proportional controller, kp, will be a function of the
external signal and the respective resulting concentration of
exosomes when applied to Eq. (9) can be described as

kp =
c(t)

cmax(t)
σmax10

−3. (15)

For this scenario, kp needs to be scale down a few orders
of magnitude, since it is a new system variable that will be
directly linked with the increase of exosomes into the ECS.

IV. EXOSOMES-RELEASE CONCENTRATION SIMULATIONS

The exosomes release and its diffusion in the extracellular
matrix can be modelled by the following Eq. (16) based on the
works of Tao et al. [11] and Sykova et al. [12]. The equation

will determine the concentration as a function of time and
radius distance from its origin, and is represented as follows:

c(r, t) =
N0

(4πD∗t)3/2
e

−r2

4D∗t , (16)

where the diffusion coefficient is represented by D, the

iNSCs
Glioblastoma

Tumor cells

Mol. Com. Channel

Exosomes

Fig. 3: Diagram of the simulations of the molecular diffusion
through the brain ECS.

number of molecules released as a point source or in this case
from the therapeutic bio-nanomachines, exosomes is defined
by N0, the time is defined by t and the distance from the point
source is represented by r. The interaction of the external
signal with the iNSCs will result in more or less exosome
release into the ECS, which will increase or decrease the
concentration of the exosomes. Taking into consideration this
feature of the system, we can model the concentration of
exosomes using the modulation of amplitude for the controller
input. This will be represented as follows:

c(r, t) =

(
A

Amax

)
N0

(4πD∗t)3/2
e

−r2

4D∗t , (17)

Fig. 4 illustrates the concentration of exosomes based on the
Eq. (17) as a function of the amplitude modulation for a radial
distance of 5 microns.

Fig. 4: Concentration of exosomes based on (17) for a
distance of r = 5 microns and diffusion coefficient D =
15x10−6cm2/s.



The diagram of Fig. 3 illustrates the molecular communica-
tion system defined by the iNSCs transmitters, the propagation
channel represented as the brain ECS, as well as the receivers,
which are the glioblastoma tumor cells. Simulations for the
molecular diffusion through a reconstructed brain ECS made
of cubic cells were performed to observe the number of
molecules as a function of time and radial distance. The
reconstructed brain ECS is made of an ensemble of cubic cells
put together in a volume with interstitial space between the
cubes. The ECS volume in the reconstructed neural tissue is
built to occupy 20% of the total volume. The reconstructed
ECS serves as a tool to study the molecular diffusion in such
space, as defined by Eq. (18).

N(t) = N0

[
erf

(
a

2
√
D∗t

)]3
, (18)

where N0 is the number of molecules being released; a
represents half the size of the cube; D∗ is the effective
diffusion coefficient and t is the time variable. The simulations
performed had 1000 molecules being released from a point
source, diffusing across the tissue at a diffusion constant of
D = 1.0 x 10−6 (the parameters for the tissue are defined in
Fig. 5). The results can be observed in the Fig. 5, showing the
number of molecules with respect to time within the sampling
cubes of 2, 3, 4 and 5 micrometers of size. The simulations
for the molecular diffusion are based on the Monte Carlo
simulations in a 3D environment based on the tool Mcell
[13],[14] [11]. The equation that accounts for the number
of molecules diffusing through a propagation channel can be
obtained by integrating the Eq. (16) over a cubic volume of
side 2a as demonstrated by [11].

The diffusion of molecules as demonstrated in Fig. 5 was
obtained by simulations with the reconstructed ECS and is
mathematically described by Eq. (16). Therefore, we can
analyze the concentration of molecules for a specified radial
distance as a function of the amplitude of the external signal,
as illustrated in Fig. 4, as well as how the molecules will
diffuse in such space depending on the tortuosity, which can
be described as the hindrance or the obstacles in the ECS
influencing how the molecules diffuse, and the volume fraction
occupied by the ECS as illustrated in Fig. 5. These simulations
serve as a tool to assist in the understanding of the exosomes
diffusion in the ECS determining the concentration of the
exosomes through time and space for specific configurations
of the ECS, consequently influencing the parameter σ, and
therefore the output of the system.

Fig. 6a illustrates the tumor growth and decay through time
dependent on the parameter σ as defined by Eqs. (1)(2). This
variable was changed from its initial steady-state value of
0.7, to arbitrary values by increments of 0.2. For different
values of σ, oscillations start to occur, which is expected from
the predator-prey dynamical systems. It is important to note
that it is fundamental that the tumor is completely eradicated,
because for many values of σ the tumor is close to being
eradicated but it starts to grow again presenting recurrences

Fig. 5: Diffusion of molecules through the reconstructed neural
tissue defined by 10x10x10 cubic cells with length size of 2a
= 0.5 µm with a spacing between them of w = 42.9 nm.
The number of molecules were recorded using extra cubes as
sampling boxes of length size r as illustrated in the figure.

due to the oscillatory behavior of these systems. Experimental
results giving more precise and accurate parameters for the
model may allow for the fine-tuning of the controller to
eradicate the tumor much sooner.

The Fig. 6b illustrates the results for the application of the
proportional controller for the first case, where the parameter
σ is variable. We observe the influence of the controller in
decreasing the time or number of days to eradicate the tumor
efficiently. In some cases, the controller can also increase
the time to eradicate the tumor, depending on the amplitude
modulation value. This happens, because in this scenario,
applying different modulations will produce different values
for the variable σ and as observed in Fig. 6a, some values
of σ can result in a longer time to eliminate the tumor than
lower values of σ. This means that high values of σ are not
necessarily the best values, the best choices for σ are the
ones shown in the simulations to eradicate the tumor faster.
The second case, the proportional controller, kp, is added into
the model, while the parameter σ is fixed in one value. The
influence of the controller in the model is similar to the first
case, being able to drastically reduce the number of days
to eliminate the tumor efficiently. Although, the difference
between the two cases is that the second is more dependent
on the value of the parameter σ. This can be observed in
Fig. 6c, where the results are closer almost independently
to the amplitude modulation. This is explained by the fact
that the controller cannot change the value of the variable σ,
which means that the controller as defined by the amplitude
modulation will make all new values oscillate around the fixed
variable σ. The results of this system can become more precise
and accurate, once the biological parameters relative to the
exosomes and the glioblastoma tumor are more studied and
modelled further. V. CONCLUSION

In this paper, we model the interactions between exosomes
and the glioblastoma tumor cells mathematically, as a dy-
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Fig. 6: a) Tumor growth and decay as a function of σ. b) Case 1: Tumor Size for parameter σ variable and controller applied.
c) Tumor Size for parameter σ fixed and controller added for σ = 1.3.

namical predator-prey system, where the exosomes represent
the predator, and the glioblastoma tumor cells represent the
prey. Additionally, we present an adaptive control algorithm
for brain-machine interfaces in the context of molecular com-
munication systems theranostics and targeted drug delivery.
An external RF signal is used as an input control signal to
control the dynamics of the model, and consequently, eradicate
the tumor more efficiently by the application or addition of
a proportional controller into the system. We analyze two
possible cases for this control system taking. The first one
takes into consideration the potential of the control system to
modify one of the biological parameters of the system. The
second one considers that these biological variables cannot be
changed by the external input and so the controller has to be
added into the model as another variable of the system. We
consider the molecular communication established between
the exosomes and glioblastoma tumor cells as well as the
propagation of the exosomes through the ECS channel and
how this will be influence and be influenced by the adaptive
control algorithm. The results were able to show that the
controller is efficient in eradicating the tumor by drastically
reducing the required time. This work paves the way to
novel biotechnology solutions to tumour theranostics using
principles of molecular communications.
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