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Synthetic Digital Circuits Using
Neuronal Molecular Communications

G. L. Adonias

Abstract

Neuron-based synthetic biology systems have been proposed in the past couple of decades
as potential candidates for more precise treatment of neurodegeneration and, as building
blocks of a platform for the design and development of novel therapeutics. Advances in
the synthetic engineering of cells in parallel with the solid paradigm of communication
engineering gave birth to a new interdisciplinary field known as Molecular Communications.
Since its birth, researchers have been focusing on characterising the existing biological
communication channels and developing theoretical models to pave the way for experimen-
talists to study, test and refine models of biological cells without the need for specialised
equipment. Molecular Communications aims to facilitate the implementation of complex
synthetic circuits capable of operating autonomously during short- and long-term periods
with higher levels of compatibility with the biological environment and increased accuracy
for minimising side effects.

The focus of this PhD thesis is to develop artificial synthetically engineered neuron-based
circuits able to perform bio-computational tasks and, promptly act on specific malfunctioning
processes inside the human nervous system. A model and analysis of neuron-based logic gates
and circuits are proposed. This mathematical framework, from the perspective of information
and communication theory, provides a way of analysing the highly stochastic processes of
neuronal communications and, integrates well-known communication metrics and techniques
(e.g. queue theory and information capacity). This thesis also presents a modelling approach
for the analysis of demyelination, either induced by a viral infection or locally with specific
drugs, that shines a light on the effects of demyelination and remyelination processes
concerning the signal propagation in a single neuron and, also, within synaptic connections.
Creating artificial bio-compatible circuits able to interface with natural cells can potentially
lead to new forms of tackling neurological disorders and cognitive enhancements limitations
that play a major role on the Internet of Bio-NanoThings.



Circuitos Digitais Sintéticos Usando
Comunicações Moleculares Neuronais

G. L. Adonias

Resumo

Os sistemas de biologia sintética baseados em neurônios foram propostos nas últimas
décadas como possíveis candidatos para um tratamento mais preciso da neurodegeneração e,
como base para uma plataforma para o projeto e desenvolvimento de novas terapias. Avanços
na engenharia sintética de células em paralelo com o sólido paradigma da engenharia das co-
municações deram origem a um novo campo interdisciplinar conhecido como Comunicações
Moleculares. Desde o seu nascimento, pesquisadores têm se concentrado na caracterização
dos canais de comunicação biológica existentes e no desenvolvimento de modelos teóricos
para abrir caminho para que experimentalistas estudem, testem e refinem modelos de células
biológicas sem a necessidade de equipamentos especializados. A comunicação molecular
visa facilitar a implementação de circuitos sintéticos complexos, capazes de operar de forma
autônoma durante períodos de curto e longo prazo, com melhor compatibilidade com o
ambiente biológico e maior precisão para minimizar possíveis efeitos colaterais.

O foco desta tese de doutorado é desenvolver circuitos baseados em neurônios sintéticos
artificiais, capazes de realizar tarefas bio-computacionais e, prontamente, agir em processos
específicos de mau funcionamento dentro do sistema nervoso humano. Um modelo e uma
análise de portas e circuitos lógicos baseados em neurônios são propostos. Esta estrutura
matemática, da perspectiva da teoria da informação e comunicação, fornece uma maneira de
analisar os processos altamente estocásticos das comunicações neuronais e integra métricas e
técnicas de comunicação tradicionais (por exemplo, teoria da fila e capacidade de informação).
Esta tese também apresenta uma abordagem de modelagem para a análise da desmielinização,
induzida por uma infecção viral ou localmente com drogas específicas, que destaca os efeitos
dos processos de desmielinização e remielinização no que diz respeito à propagação do
sinal em um único neurônio e, também, dentre conexões sinápticas. A criação de circuitos
artificiais biocompatíveis capazes de interagir com células naturais pode potencialmente
levar a novas formas de lidar com distúrbios neurológicos e limitações de aprimoramento
cognitivo que desempenham um papel importante na Internet das Bio-NanoCoisas.
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CHAPTER 1

INTRODUCTION

The human brain is one of the most mysterious organs of the body. It was only in the

early 20th century that humanity started to grasp a more profound understanding of the

brain’s essential role in vital bodily functions. With the seminal work of Santiago Ramón y

Cajal, it was described how the nervous system is made up of independent nerve cells that

communicate with each other [1]. With the growing understanding of electricity and the

technological advances that fuelled a so-called “neuroscientific revolution” and allowed the

construction of powerful tools such as microscopes, humanity could fathom a much better

understanding of the dynamics of the brain and its very complex anatomy. Even though

today is possible to comprehend, model and simulate specific behaviours concerning neurons

and their connections with other neurons (i.e. synapses), brain research is very much a work

in progress and, it is hard to estimate its outcomes.

The brain acts as a machine, it processes streams of information and decides whether

that information is relevant for storage, as in short- and long-term memories, or to trigger a

reaction as in, activating a mechanical movement such as picking up an item or walking. The

brain contains roughly more than 80 billion cells arranged into different morphological and

electrical types. Those types divide the brain into densely interconnected “modules” known

as the cortex. These connections can be “strengthened” as a kind of memory muscle that is

1



INTRODUCTION

crucial for learning and memory recall. This means that the stronger a specific connection

pattern gets, the more skillfully a specific task will be performed by the person or the more

vivid a memory will be in a person’s mind. Even nowadays, the mechanisms of how neuronal

activity is transformed into experiences are unclear. The cortex is responsible for most of the

information processing inside the brain and many researchers have been trying to understand

how the brain modulates and encodes information, which brings information and communi-

cation theory (ICT) to neuroscience for an interdisciplinary approach to neuronal information

processing. Neuroscientists are still working on correctly mapping the billions of neurons

and their respective connections aiming to understand how the neuronal microcircuitry works

and their potential continuous dynamic rearrangements. This fundamental limitation is one

of the factors holding advances in the treatment of neurodegeneration, as an alternative to

currently available treatments. Synthetic biology can potentially provide a useful set of novel

techniques to give scientists the ability to non-invasively record neuronal activity and act

upon malfunctioning cells inside the brain while the knowledge of neuronal dynamics keep

expanding [2–4].

1.1 SYNTHETIC BIOLOGY

Synthetic biology (SB) is a multidisciplinary field that puts engineering and biology together

aiming to not only design but also assemble and deploy artificial components. Such com-

ponents are capable of reprogramming cells for manipulation and augmentation of cellular

and neuronal functions to accomplish specific tasks [5, 6]. The possibility of assembling

synthetic cells (SC) from scratch has been used as the foundation for more sophisticated and

biocompatible approaches for the control and mimicry of some cellular functions and struc-

tures. This technology is at the centre of regenerative methods for the nervous system and

allows the development of novel precise treatment, diagnostics and biocomputing systems

that could act at a cellular level [7–9]. Synthetic biologists aim to construct living synthetic

2
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cells that are not only highly energy-efficient but also of minimal complexity. Also, aligned

with current research in nano-scale networks [10], the field could hugely impact the design

of modern biologically synthetic cells.

Building synthetic cells from scratch is also known as a “bottom-up” approach and it

originated from studies on biomimicry where the goal is the construction of models that

emulate elements found in nature [11]. Electronic systems such as the ones found in today’s

computers and mobile phones are examples of highly complex systems that were built using

the bottom-up approach. It consists of many small fully-functional components that were put

to work together as a single “electronic organism”. Researchers around the world have been

working on such components and their findings range from logic gates [12–14] to integrated

circuits such as oscillators [15]. Undoubtedly, this does not undermine “top-down” efforts

which are generally performed by injecting artificial code into a host cell that can be executed

either in parallel or instead of the cell’s own program [11]. For example, the work of Gibson

et al. [16] take advantage of the top-down approach where his team inserted a man-design

DNA genome into a cell that did not contain its genome to create a cell that is controlled only

by synthetic chromosome.

The idea of using mammalian cells, such as neurons, as computing elements inside the

body is not new. For instance, in the 1940s, McCulloch and Pitts envisioned that cells inside

the brain would possess logic gate capabilities [17]. Their work had a profound contribution

to advancements in machine learning (ML) and artificial neural networks (ANN) theories.

However, only recently this concept has been progressed and is gaining more and more

momentum as researchers are, for example, finding ways of making neuronal networks act as

logic gates by strengthening or weakening specific synaptic connections [14, 18]. Moreover,

the literature also shows that neuronal arrangements can also work as dynamic logic gates by

taking into account the neurons’ previous activities and frequency of stimulation at their input
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terminals [13]. On the other hand, it is also possible to control the logic gate performance of

neurons by manipulating non-neuronal cells (e.g. astrocytes) in a tripartite synapse [19].

As scientists apply proven and well-documented engineering concepts to the design of

synthetic biology systems, we look forward to a degree of controllability and reliability on

these systems that would improve biocompatibility, prevent unwanted immune response

and increase the level of certainty on predicting their outputs to allow us to fine-tune our

models for specific applications such as filtering high-frequency spike firing. The similarities

between the design of electronic and synthetic biology systems are encouraging but still

present challenges that are unknown to the common engineering design. High stochasticity

on the movement of synthetically engineered cells, mutation of biological systems and noise

from processes originating from inside and outside the human body can affect the precision of

artificial systems and compromise their reliability. Another important aspect to be taken into

account is the ability that these systems should have to exchange information with each other.

In the biological environment, this is usually performed with the use of molecules, which

enables communication capabilities that can be exploited with the help of concepts borrowed

from information and communication theory (ICT). This is done in order to quantify the

performance of the cellular network with regard to information processing. It is important

to emphasise that performance quantification is one of the aspects covered by the field of

Molecular Communications.

1.2 MOLECULAR COMMUNICATIONS

Molecular Communications (MC) has been proposed over a decade ago, it was first introduced

as a new paradigm for the transmission and reception of information modulated and encoded

into molecules at the macroscopic, microscopic, and nanometric scales. Molecules released

by the transmitter (Tx) are diffusely propagated in the medium (communication channel) and

detected by the receiver (Rx) as an end-to-end communication system inspired by natural
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biological processes [20–23]. As different types of cells in the human body communicate

through the exchange of molecules, scientists have already proposed several models that

use them as information carriers which include but are not limited to bacteria [24], calcium

signalling [25], pheromones [26], molecular motors [27] and neurotransmitters [28].

Neurotransmitters are the main molecules responsible for carrying information between

neurons in a synapse and these molecules have been drawing the attention of ICT researchers

to MC research with neurons. The focus of this work is the information carried by action

potentials (neuro-spike communication) that comprises periods of strong depolarisation of

the neuronal membrane. Action potentials (AP) are heavily influenced by the structure of the

neuron, morphological and electrophysiological characteristics can impact both the shape

of the spike and its firing pattern. However, neurodegeneration can also induce changes

in the neuronal structure causing a sort of “noise” added to the neuronal communication

channel and presenting itself as yet another challenge for the study and characterisation of

neuron-based MC systems. Different spike-firing patterns give researchers the possibility of

not only modulating [29, 30], but also encoding [31–38] neuronal information through the

synthetic engineering of neurons, opening a world of possibilities for the implementation of

biocomputational units that should be stable and biocompatible enough for novel applica-

tions [10, 39]. We hope that future implementations provide better compatibility with natural

and existent synthetic neurons in order to extend and improve current applications.

MC shows incredible potential as an alternative to conventional wireless communications,

especially in environments such as an aqueous medium, where electromagnetic (EM) waves

are strongly attenuated [40] or where the thermal effects induced by EM waves can damage

human tissues [41]. Such promising benefits have been helping redirect part of the com-

munication theory research to the nano-scale, i.e. nano-communications [42] and, although

several works are describing neuronal communication and the detection and analysis of

sequences of action potentials, there is still quite a gap to bridge, especially between theory
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and implementation. MC has the potential to boost the research and development of novel

targeted therapeutics based on synthetically engineered cells. From a therapeutic perspective,

this is an important step towards more efficient targeted therapies because traditional drug

delivery systems suffer from insufficient pharmacokinetics and unreliable distribution of

the drugs themselves. Hence, MC could be the system to provide not only satisfactory

therapeutic results but also the possibility of in vivo progress monitoring and the ability

to, if needed, make changes in the process on the go [43]. For this reason, SB and MC

must complement each other aiming to narrow the gap between theoretical approaches and

practical implementations.

1.3 ENGINEERING COMMUNICATIONS SYSTEMS WITH NEU-

RONS

Neurons communicate with each other through an electrochemical process known as synapse.

It starts with electrical impulses, known as action potentials or spikes, travelling down the

structure of the neuron and triggering the release of neurotransmitters into the synaptic cleft,

as illustrated in Fig. 1.1 [44, 45]. This process enables the brain to process information

ranging from the control and maintenance of basic vital functions to the encoding and storage

of short- and long-term memories.

Neurons not only have inspired the development of artificial neural networks but also pro-

vide a multitude of concepts for potential communication systems that could take advantage

of mimicking neuronal electrochemical signalling. Neurons are thought to encode infor-

mation not only as a single unit but also as a network through the strengthening of specific

synapses that allow a distinct group of neurons to fire action potentials nearly at the same

time and each of those connection patterns represent something different. Malfunctioning

neurons affected by neurodegenerative diseases such as epilepsy [46], Parkinson’s disease
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Pre-synaptic neuron Post-synaptic neuronSynapse

Transmitter Channel Receiver

Spikes

Fig. 1.1 Neuronal communication (synapse) and its analogous block diagram of a conven-
tional communications system.

(PD) [47] and Alzheimer’s disease (AD) [48] can compromise the integrity of the information

within a neuronal network. Acute neurodegeneration can also be indirectly induced by viral

infections that present neurotropic characteristics. These infections trigger cytokine storms as

pro- and anti-inflammatory responses of the immune system to fight the infection, however,

these processes can affect healthy tissue and, indirectly, cause more serious neurological

manifestations [49, 50]. This degeneration can induce changes in the rate with which action

potentials are fired and propagated within such a network. This results in either an increase

in the frequency of firing, e.g. seizures, or a decrease due to an abnormal neuronal cell death

rate [51].

Current solutions for neurodegeneration are often uncomfortable for a patient to live with,

they are usually large enough to be felt inside the head and noticed from the outside and, also,

they compromise the patients’ lifestyles as some have reported being extra careful to not

damage or dislocate the device when performing routine daily tasks [52]. Therefore, aiming

to address those concerns and to exploit the rich dynamics of a neuronal network, researchers

have been working on synthetically engineered neurons that react to a specific stimulus,

such as light [53–57] to control neuronal firing either for the correction of malfunctioning

connections or for the enhancement of sensory, motor and/or cognitive abilities.
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The rate and timing of firing in response to stimuli can be applied to the design of

neuron-based logic gates (detailed discussion later in Section 4.1). These synthetic logic

gates can be interconnected via synaptic connections to build specific logic circuits and more

complex components. This document focuses on the computational experiments performed

on neuronal networks for neurons modelled not only as themselves but also as electronic

components and control systems created to push the field towards more accurate and precise

platforms for the simulation, design and development of targeted therapeutics, diagnostics

and ability enhancements.

1.4 RESEARCH SCOPE AND OBJECTIVES OF THE THESIS

The engineering of synthetic circuits using neurons still poses several challenges such as

compatibility with the biological medium and energy efficiency. Aiming to address those

challenges, mathematical models are created to facilitate and speed up the study of such

complex systems. The employed techniques help quantify the dynamics of the system,

often analysed in vitro or in vivo, provide a way to formalise the biological knowledge

currently available, and obtain a replicable methodology [58]. This PhD research work

involves the analysis of biological behaviours and the modelling and simulation of molecular

communications systems using neurons. It is also focused on techniques based on both

computational synthetic biology and molecular communications to address the following

challenges:

1. Establish a novel method for analysing the synthetic systems ability to communicate at

the nano-scale for neurons.

2. Model biological processes using conventional communications systems techniques.

3. Shine light on neuronal characteristics that are fundamental to the development of

novel neuron-based molecular communication systems.
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The study is based on integrating various computational and mathematical models of

neurons, and this includes models that govern the neural signalling when they are engineered

as well as models when neurons are affected by diseases. The thesis also incorporates the use

of data obtained from the literature that describes wet-lab experiments and, also, provided by

collaborators, which will support the investigation on the design of a neuron-based molecular

communications system capable of addressing the challenges mentioned above.

1.4.1 OBJECTIVES

This PhD research work aims to investigate and model the molecular communications pro-

cesses that support the operation of neuron-based communication systems. This research

is dedicated to applying information and communication theory for the analysis and relia-

bility of neuron-based molecular communications modelled under circuit systems theory

to study and propose solutions that can provide new insights for neuroscience and support

the treatment of neurodegenerative diseases in the future. Its ultimate goal is to pave the

way for future frameworks of novel precise treatment of neurodegeneration. As a result, the

following objectives are defined to address the current limitations and challenges of this form

of communication.

1. Designing and developing computing functionalities from the interconnection of

neurons: Synthetic engineering of cells usually requires wet-lab experiments and in

vitro testing. However, validating this through computational modelling and simula-

tions can provide more accurate design and lower the costs for wet-lab experimental

work. This in turn will provide a new tool for future synthetic biology engineering of

neurons to sense and treat diseases.

2. Developing computational models for neuronal signalling using circuit theory for

the treatment of neurodegeneration: The development of novel treatments takes

9



INTRODUCTION

years to get to a stage where it is safe for the general public. With the develop-

ment of accurate computational models reflecting the neurons’ ability to exchange

information, we can apply well-documented circuit theory concepts to analyse and

quantify the neuronal signalling to efficiently and accurately propose new insights

about neurodegeneration.

3. Studying the effects of diseases based on molecular communications interactions

among neurons to understand their communication behaviour: By bridging biol-

ogy and engineering, molecular communications are helping advance the knowledge

on the communication between neurons paving the way for more reliable approaches

that minimise the overall uncertainty of the neuronal communication channel.

4. Using real wet-lab experimental data to understand changes in neural molecular

communications: Computational models can provide a better understanding of bio-

logical processes, however, the use of data collected from wet-lab experiments can

drastically improve the performance of our models. This data can help understand

details intrinsically present in biological systems and validate the findings obtained via

simulation.

1.5 RESEARCH QUESTIONS

In the previous sections, several challenges posed towards the development of neuron-based

communications systems were introduced (e.g., mutation of biological systems, noise from

neighbouring biological processes, biocompatibility and biostability). This research work

aims to contribute to the development of solutions to tackle the aforementioned issues. This

is formally described through the following hypothesis:
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Computational neuron-based molecular communications models can advance our

understanding of the impact of neurodegeneration on neuronal communications and

support the development of novel precise treatment of neurodegenerative diseases.

These potentially novel approaches to neurodegeneration will take advantage of neuron-

based molecular communications for processing neuronal information, which in this thesis,

is also studied in terms of circuit and systems theory where neurons can perform complex

computational tasks. Firstly, the thesis will propose the use of neurons as logic gates and,

consequently, logic circuits. This is then expanded to more complex circuits such as filters

modelled by known control systems tools and, finally, myelination processes (which describe

the production of myelin that act as layers of electrical insulation wrapped around the axon) at

a single neuron level is investigated to understand how it interacts with other bodily functions

and viral infections. These analyses will be able to offer relevant data on the reliability of

those synthetically engineered neurons and their communication among a natural neuronal

network. This hypothesis led to several research questions which were designed to fulfil all

the required aspects for proposing synthetic neuronal communication systems.

First Research Question (RQ1) - How can different logic gate operations and logic

circuits be developed from neuron-based molecular communications?

Currently, synthetic neurobiologists can engineer neurons to perform tasks like logic

operations. However, several challenges exist such as neuronal control in real-time

slowing down the development and application of more complex genetic circuits.

The modelling of internal and external communication processes is an important

step towards the solution of those aforementioned challenges. Therefore, in this

research, we will model and analyse the molecular communications that exist behind

engineered neuronal logic gates which should allow them to work in a more stable and

controllable way. The development of neuronal logic gates represents quite a big step

towards building more complex circuits. By modelling complex neuronal processes,
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we can use the same approaches to connect these logic gates to form bigger and more

complex logic circuits. By keeping default parameters related to the relevant synaptic

connections in a process similar to the one performed for connections inside the gates

themselves, we can connect inputs and outputs of different gates with each other and

form circuits that can perform more complex operations such as arithmetic operations

with spikes as bits or filtering specific spike firing frequency bands.

Second Research Question (RQ2) - How can logic circuits be developed to create

filters or amplifiers, using neuronal networks by theoretically analysing the non-linear

dynamics of neural molecular communications?

Neuron models are known for their highly non-linear behaviour and many factors

such as spike firing rate may compromise the performance of neuronal logic gates and

circuits and pose themselves as yet another challenge. With the aid of linearization

techniques, we can analyse such systems by assessing their local stability of an equi-

librium point and use concepts of systems and control theory to propose models and

frameworks for more robust electronic components built with biophysical models of

neurons.

Third Research Question (RQ3) - How to model functionalities of logic gates and

circuits for the analysis of their reliability and efficiency?

Networks of neurons are quite hard to model. This is not limited to our understanding

of the brain functions, but also there are too many processes to account for. We intend

to simplify complex functionalities to a point that we can have a good approximation of

the way they actually work. One approach is to use queueing-theoretical concepts over

logic gates operation allowing a satisfactory prediction of the behaviour of neurons

acting as gates. On the other hand, such a non-linear system can be linearised and

derived as a control system, where systems theory concepts can be applied for analytical
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analysis and possibly the proposal of mathematical frameworks that could increase the

efficiency on a specific task such as filtering to improve accuracy when performing

logical operations.

Fourth Research Question (RQ4) - How can we model and simulate changes in

neuron structure and analyse their impact on their communication behaviour?

Like any other cell in the body, neurons are subjective to processes that could either

strengthen or weaken their structure. These processes could be characterised, for

example, by neurodegeneration, myelination, or the immune system’s response to

infections. To understand the rate with which these effects affect the neuronal structure

we first need to understand how those processes work and their most relevant dynamics

so it is possible to reproduce them in our simulation. There are several models of

neurons and one of the most biologically plausible is the Hodgkin-Huxley which

provides the dynamics and kinetics of ions and ionic channels and allow us to link the

natural behaviour of the membrane to the effects of external agents that could either

compromise or improve the structure of the neuron.

Fifth Research Question (RQ5) - How viral infections can affect the performance

of neuronal molecular communications systems and what communication analysis

can be performed? Some viruses present neurotropic properties, in order words,

they can invade and replicate themselves within the nervous systems. This may

not always be the root cause for degeneration but it most likely will lead to pro-

inflammatory processes carried out by the host’s immune system. These processes are

triggered to fight the infection but, as a side effect, they can also damage healthy tissue

which compromises not only the propagation of the neuronal signal but also neuronal

connections. To understand whether this can lead to more serious neurodegenerative

diseases and quantify their effects, we intend to mathematically model and account for

these external factors and evaluate the neuronal performance by applying well-known
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concepts from communication engineering and information theory that should provide

us with a solid understanding of how the neuron is being affected aiming to adapt

and propose solutions that would minimise the damage and improve the system’s

performance.

1.6 DOCUMENT ORGANISATION

The remainder of the thesis is organised as follows. Chapter 2 presents background informa-

tion on computational neuroscience and the biological processes for neuronal communication.

Chapter 3 discusses approaches for the analysis of the communication between neurons from

the perspective of molecular communications and, in Chapter 4, we present methods for the

design and development of biological computing units based on synthetically engineered

neurons. Chapter 5 presents a summary of the research contribution which can be reviewed

in further detail throughout Chapters 6-11. A discussion about the insights and findings

proposed by the research work in this thesis is presented in Chapter 12 and, finally, the

conclusion and future works are presented in Chapter 13.
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CHAPTER 2

COMPUTATIONAL NEUROSCIENCE AND

NEURONAL COMMUNICATIONS

Computational Neuroscience is a field of study that covers subjects from molecular and

cellular studies to human psychology and psychophysical methods which are described by

different types of behaviour by the nervous system. By putting together theoretical analysis

and computational modelling, it is possible to understand and characterise how and why the

nervous system operates the way it does. The construction of models helps to bridge different

levels of description of the nervous system even though it can be difficult to identify the

appropriate level of modelling and achieve the best balance possible between complexity and

performance. It is important to put enough details to mimic as many dynamics as possible

while keeping it simple enough to generate meaningful results. Furthermore, when multiple

concepts from different fields of study are put together such as biology, communications

engineering, control and systems theory can help the design and implementation of complex

synthetically engineered biological systems, as well as expand the understanding of biological

systems. In this chapter, the mechanisms and dynamics of the electrical and chemical aspects

of the communication among neurons are described. This chapter also provides an overview
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of the modelling of these communication processes and how it accounts for the diverse

characteristics of neurons.

2.1 NEURONAL COMMUNICATION

Neurons are generally divided into three main parts: dendrites, soma and axon. The dendrites,

i.e. post-synaptic terminals, receive stimuli from other cells and can help distinguish different

neuron morphological types by the way the dendritic trees are projected onto neighbouring

neurons. The main section of the cell is the soma. This is the place where most of the

expression of proteins and genes and it is where all stimuli are received by the pre-synaptic

cells are summed up. The membrane potential, when at rest, is negatively polarised due to

the distribution of ions with regards to the extracellular medium. In the case of depolarisation

of the membrane, the neuron should fire a spike down the axon. The axon is where the spike

is propagated toward the pre-synaptic terminals of the neuron at its far end, passing neuronal

information forward to post-synaptic neurons connected to it [28, 59].

The generation and propagation of action potentials is the electrical part of neuronal

communication. After the spike reaches the pre-synaptic terminals, it triggers the release

of synaptic vesicles that contain molecules (neurotransmitters) that are diffused in a small

gap between pre- and post-synaptic terminals, known as the synaptic cleft, characterising

this second stage as the chemical part. For this reason, the communication between neurons

is an electrochemical process. Those neurotransmitters should probabilistically bind to

neuroreceptors located on the post-synaptic terminals and drive a change in the membrane

conductance which leads to the gating of ionic channels. These channels control the flow

of ions which may excite the neuron, triggering the firing of an action potential or inhibit it,

depending on the type of neurotransmitters received [28]. As aforementioned in Section 1.2,

this electrochemical signalling process is within the context of molecular communications

which employs manipulations to the spike firing pattern and neurotransmitter release for
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the control of information transfer between two neurons. This whole process is known as

synapse and is illustrated in Fig. 2.1.

Pre-synaptic neuron Post-synaptic neuron

Axon
Terminals

Myelin
Sheath

Soma

Dendrites

Axon
Hillock

Axon

Neurotransmitter
Re-uptake pump

Synaptic
Vesicle

Voltage-gated
Ca2+ Channel

Neuroreceptors
Neurotransmitters

Pre-synaptic
Terminal

Post-synaptic
Terminal

Synapse

Synaptic Cleft

Fig. 2.1 Detailed illustration of a synapse.

In an excitatory synapse, the membrane potential of the postsynaptic neuron, which

rests at approximately -65 mV, starts to depolarise until it reaches a threshold, θ , for action

potential initiation. On the other hand, if it is an inhibitory synapse, the membrane should

get hyper-polarised making it nearly impossible for the neuron to fire a spike. After reaching

θ , the membrane potential should increase towards a maximum peak of depolarization, and
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then the repolarisation process starts to drive the potential towards its resting state. For a brief

moment, the neuronal membrane will repolarise itself past the reference value of potential

when at rest making the membrane hyper-polarised and this short moment is known as the

refractory period. This period can be further subdivided as absolute refractory period (ARP)

which lasts around 1-2 ms during which the neuron is unable to fire again regardless of the

strength of the stimuli, and as relative refractory period (RRP) which follows the ARP and,

a response in the potential of the neuron may be evoked depending on the strength of the

stimuli [60].

2.2 MATHEMATICAL MODELLING OF NEURONAL PROCESSES

2.2.1 THE HODGKIN-HUXLEY (HH) CONDUCTANCE-BASED MODEL

The response of the neuron is highly non-linear and the model must not be too simple as

to lose relevant characteristics of the neuron and not too complex as to compromise the

performance of the model. For that reason, we chose to use Hodgkin and Huxley non-linear

model [61, 62] as it perfectly describes the influence of ionic and synaptic conductances in the

propagation of the action potentials and, it is one of the most biologically plausible models for

computational neuroscience showing consistency with existing biological knowledge [63].

In Fig. 2.2, we see how Hodgkin and Huxley used circuit theory and, consequently,

mathematical equations to build an equivalent circuit that reproduces the behaviour of

a neuron in which C is the membrane capacitance. Each voltage-gated ionic channel is

represented by its respective conductances gNa and gK and the leak channel by the linear

conductance gl . It is important to note that the membrane capacitance is proportional to

the surface area of the soma of the neuron and both the capacitance and its resistance helps

estimate at which speed its potential reacts to the flow of ions through the membrane. The

logarithmic ratio between intra- and extra-cellular ions define the reversal potentials ENa
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C

gNa

ENa

gK

EK

Iext

gl

El

Fig. 2.2 Hodgkin-Huxley circuit representation of a neuronal compartment showing the
membrane capacitance (C), the external current (Iext), the variable conductances for the
Sodium (gNa) and Potassium (gK), the reversal potentials for Sodium (ENa) and Potassium
(EK), the linear conductance (gl) and the leak reversal potential (El).

and EK establishing a gradient that will drive the ionic flow [64], where Na and K represent

Sodium and Potassium, respectively.

When an external stimulus, Iext , is applied, it triggers either the activation or inactivation

of the ionic channels that control the exchange of ions that result in depolarisation (or hyper-

polarisation when inhibitory) of the membrane of the cell. These dynamics are modelled

as

C
dV
dt

=−Il− INa− IK− Isyn + Iext , (2.1)

where V is the membrane potential and Ix are the ionic currents where x can be either a

specific ion (Na, K) or the leak channel (l). Those currents are described as

Il = gl(V −El), (2.2)

INa = gNam3h(V −ENa), (2.3)
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IK = gKn4(V −EK), (2.4)

where m and h are the activation and inactivation variables of the sodium channel, respectively,

and n is the activation variable of the potassium channel, following the conventional approach

described by Hodgkin and Huxley [62] and stated as

dm
dt

= αm(V )(1−m)−βm(V )m, (2.5)

dh
dt

= αh(V )(1−h)−βh(V )h, (2.6)

dn
dt

= αn(V )(1−n)−βn(V )n, (2.7)

in which the values of the rate constants α i
x and β i

x for the i-th ionic channel and, x represents

m, n or h, can be defined as

αm =
0.1(V +40)

1+ e−(V+40)/10
, (2.8)

βm = 4e−(V+65)/20, (2.9)

αh = 0.07e−(V+65)/20, (2.10)

βh =
1

1+ e−(V+35)/10
, (2.11)

αn =
0.01(V +55)

1− e−(V+55)/10
, (2.12)
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βn = 0.125e−(V+65)/80. (2.13)

Also, we present a simplified approach for the synaptic inputs from pre-synaptic cells, Isyn, in

which the ionic channels that are activated by neurotransmitters arriving at the neuroreceptors

is represented as

Isyn = gsyn(V −Esyn), (2.14)

where the synaptic conductance, gsyn, and the synaptic reversal potential, Esyn, are used

to describe many different types of synapses, and the latter may assume different values

according to the types of neuroreceptors. The gsyn can be described as a superposition of

exponentials, thus

gsyn = ∑
f

ḡsyn e−(t−t( f ))/τ H(t− t( f )) , (2.15)

where τ is a time constant, ḡsyn is the peak synaptic conductance, t( f ) is the arrival time of a

pre-synaptic action potential and H(·) is the Heaviside step function [65].

The larger the cell diameter, the lower the spontaneous firing rate [66]. Furthermore, each

ionic channel can be studied as containing one or more physical gates which can assume

either a permissive or a non-permissive state when controlling the flow of ions. The channel

is open when all gates are in the permissive state and it is closed when all of them are in the

non-permissive state [67].

2.3 CONCLUDING REMARKS

As presented in this chapter, the dynamics of a neuronal communication channel can be

expressed in terms of mathematical models such as the one presented in Section 2.2.1, it
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makes use of a set of ordinary differential equations to capture the highly non-linear char-

acteristics of neuronal membrane potentials and reproduce its behaviour. Researchers have

been considering interdisciplinary approaches aiming to take advantage of those dynamics as

is the case of Molecular Communications. However, some challenges still remain and need to

be addressed. For instance, it is still unclear how neurons encode and modulate information

to transform it into experience or to trigger motor functions even though many techniques

have already been proposed [34, 35, 37, 68, 69]. Furthermore, a solid understanding of

the way neurons communicate is essential on the quest to propose more efficient ways for

measuring the reliability of the neuronal communication channel, since densely packed

“random” connectomes of neurons can compromise the processing of information especially

if there is a second source of stimulation such as optogenetics stimulators [53, 70] which can

impact the performance of the system and integrity of the information.

There has been a tremendous effort from scientists around the world to model and simulate

the brain in as much detail as possible to account for the plurality of a morphologically- and

behaviourally-rich network of neurons. These models are certainly useful, however, there is

not much relevant information on the control of neuronal information itself. In the works

that will be later presented in Chapter 5, models based on the Hodgkin-Huxley formalism

(see Section 2.2.1) were used for the analysis and development of models of synthetically

engineered neurons as well as more complex neuronal circuits. The primary goal is to apply

models that provide a good balance between efficiency and biological plausibility aiming to

construct synthetic biological circuits with a high degree of fidelity when compared to real

biological systems. Thus, this thesis presents results that push the boundaries of neuronal

molecular communications supported by simulations of widely-used and -praised models of

neurons.
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CHAPTER 3

NEURON-BASED MOLECULAR COMMU-

NICATIONS

Molecular communications is a relatively new communication paradigm that takes advantage

of molecular dynamics between cells within the human body to control the exchange of

biological information. It borrows concepts from conventional information and communica-

tion theory aiming to create robust and scalable techniques for interfacing natural cells with

synthetically engineered ones and potentially allowing more efficient targeted therapeutics,

biochemical sensing, biocompatible sensor and actuator networks and the enhancement of

cognitive abilities.

One of the different approaches for this kind of communication system is the use of

neurons (either natural or synthetically engineered) as both ends of a communication channel,

i.e. transmitter and receiver. This revolutionary thinking on the use of biological components

as part of a communication system has been supporting scientific advances in the analysis

of neurodegeneration and its direct or indirect causes. In this chapter, a discussion on the

analysis of neurons and their connections from the perspective of molecular communications

is presented. It also provides insights into how demyelination-induced degeneration can be
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studied and, how foreign agents such as viruses, can indirectly trigger damaging neurological

manifestations that can negatively affect the nervous system and its role in the human body.

3.1 MOLECULAR COMMUNICATION ANALYSIS OF NEURONS

As synthetic biology has been trying to bridge the gap between biology and engineering,

scientists have also been working on ways to benchmark these biological communication

channels using conventional information and communication theory. Computational and syn-

thetic neurobiologists need to find proven concepts for the quantification of communication

systems and by re-using well-known metrics. This will not only contribute towards a solid

understanding of the capabilities of communication at a cellular level but also help narrow

that knowledge gap even faster.

An early example is the work of Balevi and Akan [28], where the authors proposed

a simple model of hippocampal neurons that accounts for a unidimensional diffusion of

neurotransmitters in a bipartite synapse based on an assumption that there is a probabilistic

factor to the process of binding neurotransmitters to neuroreceptors in the post-synaptic

terminal. Ramezani et al [71] derived analytical expressions of a synapse with models from

hippocampal neurons for a single input single output (SISO) communication channel. In

this work, they proposed a three-dimension diffusion of molecules in a bipartite synapse

following a Brownian motion.

As aforementioned, many models are applying concepts of information theory to bench-

mark the whole neuronal communication system. One example is the work of Veletić et

al [72], who propose that communication between neurons resemble a conventional peer-to-

peer (P2P) communication channel and their analysis could lead to implications for future

P2P applications as they investigated the electrochemical and molecular paradigms of neu-

ronal communication from a purely engineering perspective. Veletić and Balasingham [73]

also use information theory to evaluate the performance of biological neuronal networks
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showing a relationship of dependence between rate-coded neuronal information and synaptic

connections, and morphological variety of connected neurons even though they are consid-

ering only SISO systems while in reality one neuron usually sends information to several

others resembling a SIMO (single input multiple outputs) system. Barros [74] evaluates the

performance of a cortical micro-column under the influence of noise and neuronal stimulation

which lowers the capacity of the micro-circuitry channel, especially over time, resembling a

common fast fading channel.

Furthermore, some studies emphasise a (MISO) multiple input single output system such

as Cacciapuoti et al. [75] who proposed the analysis of the pre-synaptic terminals as multi-

array transmitters since it is possible to find different dynamics between many connections

to the same post-synaptic neuron, such as the probability of vesicle release. The modelling

and characterization of the stochastic behaviour of the pre-synaptic terminals validated

through numerical simulations reflected complex biophysical mechanisms of a synapse.

Khan et al. [76] proposed an analysis of the synapse as a tri-dimensional space where the

neurotransmitters are diffused and can, potentially, be re-absorbed by the transmitting neuron.

Their results were validated by using Monte Carlo Simulation which also showed itself to be

much faster in runtime when compared to the Monte Carlo approach. Khan and Akan [77]

have analyzed the MISO neuro-spike communication system and how its mutual information

and maximum achievable sum rate are affected by dynamic spiking thresholds helping to

select neurons for particular applications in bionanonetworks studies. Lotter et al. [78]

proposed a model for the synaptic diffusive molecular communication channel where they

assess the impact of molecule re-uptake that propagates through the synaptic cleft following

a Brownian motion.

All of the aforementioned studies in this section have served as progressive steps in the

analysis of neuronal networks from the perspective of molecular communications as well

as to contribute to the research and development of artificial neural communications and
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facilitate the connection between real and artificial cells to further advance the treatment of

neurodegenerative diseases. However, these works do not explore the real impact of neuronal

information when artificially modulated and dispatched in between the natural signalling as

well as the plurality of synthetic logic circuits inside a morphologically- and behaviourally-

rich network of neurons (Fig. 4.1). One of the most detailed examples of models of neurons

are the ones proposed by Markram et al. [59], the authors provide a digital reconstruction of

the neocortical microcircuitry of rat’s somatosensory cortex with fully-functioning models of

neurons possessing different morphological and electrical behaviours which can support the

development of analytical frameworks to be used as platforms for precise simulation of the

effects of computing agents inside the brain.

3.2 BIOLOGICAL PROCESSES OF DEMYELINATION

Demyelination occurs when the myelin sheath sustains damage. Myelin sheath is the

protective coating that wraps itself around the axon providing insulation and supporting

action potential propagation. Diseases such as multiple sclerosis (MS) can be characterised

as a functional impairment induced not only by the loss of myelin sheath but also by the

failure of remyelination. Myelination in the CNS (central nervous system) is performed

by oligodendrocytes while Schwann cells are responsible for the same process in the PNS

(peripheral nervous system) [79]. Myelin sheath is important for the insulation and conduction

enhancement in the axonal pathway [80], therefore, demyelination can impair the conduction

of action potentials through the axon, attenuate the signal and compromise the communication

between neurons leading to a deficiency in specific brain functions depending on which

neurons are suffering demyelination. It can occur due to viral infections [81], vitamin

deficiency [82], toxic, chemical or autoimmune substances [83] or a complete failure on the

myelination process [84].
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It is not an easy task to establish the sequence of events that leads to human demyelinating

disease, but there is some evidence that myelin proteins are damaged first followed by a

breakdown of the lipid bilayer [80]. In general, the permeabilization of the blood-brain

barrier (BBB) precedes the process of demyelination. The BBB is a partially permeable

structure of endothelial cells that regulates the transport of serum factors and neurotoxins

between the circulating blood and extracellular fluid in the CNS [85]. One cause can be the

activation of microglial cells, which are the resident macrophage cells in the brain and act as

the main form of immune defence in the CNS and, potentially, damage the BBB facilitating

the entry of toxic and autoimmune substances and accelerating the degradation of myelin

sheaths [80, 86].

3.3 IMPACT OF VIRAL INFECTIONS ON THE NERVOUS SYS-

TEM

Nerve cells are not immune to viral infections and they can be affected by the so-called

neuroinvasive viruses [87]. When a virus exhibits the ability to infect the nervous system, they

are known to possess neurotropic properties and this type of virus can replicate itself within

the nervous system [49]. These viruses can negatively impact basic functions performed

by both central (CNS) and peripheral nervous systems (PNS) and even lead to severe nerve

damage by triggering pro-inflammatory immune response [88]. Scientists have found that

several viruses exhibit this kind of behaviour. For instance, the Zika virus (ZKV) [89] can

infect the peripheral nervous system (PNS) and, sometimes, spread to the central nervous

system (CNS). The human immunodeficiency virus (HIV) [90] can infect the CNS and cause

neuroinflammation induced by an immune response of the body and, consequently, lead to

neurodegeneration [91].
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Studies have also shown that the novel coronavirus, SARS-CoV-2, may be able to invade

the nervous system [92–95]. By hijacking and exhausting the cell’s machinery for replication

purposes, viruses can cause strong structural and biochemical damages to the host cell until

the cell is killed. The body’s defence mechanisms are triggered to avoid further damage to

healthy cells and tissues by performing numerous toxic-metabolic processes, such as cytokine

storms. These processes can potentially lead to inflammation and neurodegeneration as a side

effect of the fight against the infection [81]. A recent survey [96] gathered information on

the use of molecular communications for the modelling and analysis of infectious diseases,

however, it did not account for effects caused by those infections. The need for novel

molecular communications models able to reproduce the dynamics of biophysical processes

performed by this kind of disease can instigate in-depth analysis not only of healthy cellular

behaviour but also of dynamics needed for treatments based on synthetic biology. Further

advancements can potentially lead to more efficient ways to stop neuroinflammation and

restore “collateral damage" done to neurons [97].

3.4 CONCLUDING REMARKS

The construction of systems at the nano-scale with the capability of exchanging information

using molecules has been made possible by advancements in synthetic biology research.

There is quite a significant plurality of molecular communication systems aiming to under-

stand not only how cells interact with each other but, also, their behaviour with regards

to neuroinvasive viruses. Furthermore, literature is still a bit scarce when it comes to the

study of the effect caused by viruses that do not attack primarily the nervous system have on

neurological functions, especially when it could potentially lead to neurodegeneration such

as demyelination.

In an effort to understand how these processes are linked together, this thesis also aims to

connect all related processes and model an end-to-end cause-and-effect phenomenological
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description of how viral infections can affect neuronal molecular communications. This

project intends to further extend the analysis of neuronal systems and evaluate their com-

munication performance to lay the groundwork accounting for the biological processes of

neurodegeneration.
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CHAPTER 4

ENGINEERING NEURON-BASED SYNTHETIC

COMPUTING UNITS

Advances in the field of bioengineering and nanotechnology are giving scientists and re-

searchers the right tools to engineer devices at the micro- and nano-scales inspired by

biological dynamics and materials [98]. These devices, known as bio-nanomachines, are

a biologically-inspired ramification of nanomachines. They are thought to be fully func-

tioning synthetically engineered components capable of interacting with natural cells and

molecules in the biological environment. It is envisioned that these nanomachines should

address many of the challenges that still remain for synthetic biologists, especially in terms

of biocompatibility, biostability and energy efficiency [99].

With the interdisciplinarity of molecular communications and nanonetworks, many

researchers have been able to model and propose synthetically engineered biocomputing

units able to precisely control a cell’s behaviour and, by controlling neuronal dynamics, it

increases the chances of creating a logic operating neuronal system that could help to push

the boundaries of alternatives for precise treatment of diseases at a cellular and molecular

level. In this chapter, a discussion on the advances of the use of neurons or network of
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neurons as logic gates are presented as well as how non-neuronal cells may play an important

role in the control of neuronal behaviour.

4.1 NEURONAL LOGIC GATES

Fig. 4.1 Representation of a neuronal logic gate inside a cortical column. Three neurons
compose a logic gate, two of them acting as inputs and one as the output of the gate. A gate
establishes synaptic connections with natural neurons inside the cortical column.

To this day, biocomputing still remains a challenge for synthetic biologists but it has

the potential of paving the way for the development of more biocompatible alternatives for

the treatment of diseases [100]. These alternatives should be possible by building logic

operating biocomponents that are capable of establishing a communication channel with

natural cells within the human body. Drug design and discovery is the conventional way for

the treatment of neurodegenerative disorders. The issue with this approach is that, despite its

challenging process, new drugs usually have less than a 10% success rate for approval by the

competent authorities [101]. Several factors contribute to this relatively low success rate but

it is important to highlight the limited availability of biophysically plausible models and a
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limited understanding of the biological processes involved in the diseases as well as many

clinical trials for the study of potential side effects. For that reason, researchers are hopeful

that biocomputing will be the mechanism that will allow them to perform precise control

of a cell’s behaviour and any other neurodegenerative effect [101]. Such designs could be

improved and speeded up by the development of realistic frameworks capable of assessing

the side effects of newly-discovered drugs without the ethical implications of clinical trials

of current approaches.

In the 1940s, the idea that the brain comprises small units with logic gating capabilities

was proposed by McCulloch and Pitts [17] and, although there was not much interest in their

work during that time mainly due to the lack of technology to control the highly dynamic

behaviour of the neurons, it did contribute to advancements in the fields of artificial neural

networks and machine learning [13]. However, in the past few years, the scientific community

has been witnessing an increase in the interest in biological logic gates constructed from

brain cells driven by the emergence of cellular reprogramming techniques aiming to augment

cellular capabilities through synthetic biology [6]. By allowing the control of neuronal

dynamics, the possibility of creating logic operating engineered systems to interact with

natural and engineered cells may lead to the development of better alternatives for the

treatment of diseases at the cellular level [100].

0 1 0 1

0 0 1 1

0 1 1 1

(a)

0 1 0 1

0 0 1 1

0 0 0 1

(b)

Fig. 4.2 Sampling spiking trains as bits; responses of both a (a) neuronal OR gate, and a (b)
neuronal AND gate.

This idea of using neurons and non-neuronal cells as computing agents or as part of

a computing “arrangement” that may comprise one or more neuronal and non-neuronal

cells (Fig. 4.2), has been progressed by several works. As a first example, the work of
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Vogels and Abbott [14] investigated how the manipulation of specific synaptic connections,

either by strengthening or weakening some of them, may evoke different logic gates within

a homogeneous network of integrate-and-fire models of neurons. Goldental et al [13]

proposed that, unlike conventional electronic logic gates that consistently follow its truth-

table, neuronal logic gates are dynamic and their functionalities depend on the frequency at

the input, the activity of their interconnections and the history of their respective activities.

Their experiments followed a procedure that enforced stimulations on neuronal circuits

within a network of cortical cells in vitro.

Furthermore, Song et al [19] proposed that, in a tripartite synapse, the influence of

astrocytes may help to control logic gating operations of neurons, but only a single type of

neuron with a unique spiking pattern is used. Feinerman et al. [102] created three different

neuronal logic devices using hippocampal neuronal cultures in vitro. The first one was a

simple threshold component that would fire when it reaches a sufficiently high amplitude on

the input, then they put two threshold components in parallel allowing the propagation of the

signal only if the inputs are coincidental, in other words, their second device was an AND

gate. The last component they built was a diode that used an asymmetric variation of the

threshold component. According to the authors, the devices are very reliable with an average

of 7% error across all three components.

We can also find in the literature evidence that neurons may act like filters, such as

the work of Fortune and Rose [103] where they studied the effects of passive and active

membrane conductances as mechanisms responsible for temporal filtering of spike trains.

On the other hand, experiments conducted by Plesser and Geisel [104] on integrate-and-fire

models of neurons showed that noise improved signal-to-noise ratio, if the neuron is fed with

a periodic input, within a specific frequency range showing a bandpass filtering behaviour.

Even with the tremendous effort of the scientific community so far, it has yet to investigate

how synthetically engineered neuronal logic gates can be applied in neuroscience and the
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impact synthetic neuronal computing units could have on a type-rich biological neuronal

network and do not yield analytical models that could be used to describe the filtering

capabilities of a neuron induced by specific drugs. Potential applications such as digital

filters or amplifiers can help control abnormal spike firing patterns and provide the possibility

to construct more complex circuits to perform more complex tasks.

4.2 DISCUSSION

Biological computation is still in its early stages of development even though there are

several concepts already available in the literature. The models proposed by this PhD

research provides the possibility of pushing the improvement of current devices used for the

treatment of neurodegeneration. Surely there is a long way to translate the models shown

here to fully validated solutions, especially in terms of the scale of the proposed systems but

the capability of being reconfigurable and of having its accuracy more precisely estimated

build the basis for more complex and robust systems.

With the construction of synthetically engineered neurons that resemble common, well-

known electronic circuits, it is possible to adapt well-documented telecommunication systems

and circuits metrics to properly analyse the performance of these biocomputing units and their

role in molecular communication systems whilst accounting for the biological properties of

neurons. A properly performed characterisation of those systems allied with the investigation

in this chapter is an important step towards the design of a biocompatible synthetically

engineered neuronal circuit. The proposed applications are based on the wireless nature of

the synapse and focus on the single- and multi-unit interaction among neurons.
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CHAPTER 5

THESIS RESEARCH SUMMARY

This PhD research has produced six research articles which include four journal articles,

one conference short paper and one workshop paper. Each of these articles significantly

contributed towards answering the five research questions (RQ) posed in the first chapter of

this document (Section 1.5).

5.1 ADDRESSING RESEARCH QUESTIONS WITH PUBLICA-

TIONS

The study of the research questions has been continuous, meaning that the produced papers

address partially more than one of the proposed RQs. This chapter presents a mapping of

each publication to the specific RQ it addresses as depicted in Table 5.1.

Table 5.1 Association between the research questions and publications.

Questions Publications
RQ1 TNB, NANOCOM, MOLCOM
RQ2 FCN
RQ3 TNB, FCN, MOLCOM
RQ4 PHYSBIO
RQ5 TNSRE
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Furthermore, the summary and contributions of each publication are briefly discussed

below.

1. TNB (Chapter 6) - G. L. Adonias, A. Yastrebova, M. T. Barros, Y. Koucheryavy, F.

Cleary and S. Balasubramaniam, “Utilizing Neurons for Digital Logic Circuits: A

Molecular Communications Analysis,” in IEEE Transactions on NanoBioscience, vol.

19, no. 2, pp. 224-236, April 2020.

Summary: For our first journal paper, it was decided to work on a more complex

synthetically engineered arrangement of neurons that can form logic gates (Fig. 5.1a).

Biocomputing devices can open up possibilities not only for modulation and encod-

ing of information but also for the treatment of neurodegeneration such as epilepsy.

Neurons can have their synaptic properties modified in other to evoke logic gating

capabilities in a network [14] or take advantage of the influence of non-neuronal cells,

e.g. astrocytes, that can be used to help to control synaptic processes [19].

(a)

μ

λ1

λ = λ1 + λ2
λ2

ΔI

(b)

W1(s)

W2(s)

W3(s)Σ

(c)

Fig. 5.1 Different models of a biological logic gate; (a) neuronal connection inside gate,
(b) queueing-theoretical models for a neuronal logic gate, and (c) transfer-function
block equivalent of a neuronal logic gate.

Contributions: In this paper, we contributed to RQ1 and RQ3, where we proposed a

queueing-theoretical model (Fig. 5.1b) for each gate allowing the study of the dynamics

of the proposed neuronal logic gates as a single element and, analysing the collective

behaviour of the neurons that compose a logic gate. The results suggested higher

accuracies when predicting the behaviour of a gate, especially when the mean inter-

spike interval (ISI) increased at the input. This sort of prediction could help synthetic
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neurobiologists to propose an arrangement capable of smoothing out high-frequency

firing caused by neurological disorders such as epilepsy. The results also suggested

that the sampling frequency of the spiking train of signals plays a role in the accuracy

of the gates and the quality of the proposed model.

2. FCN (Chapter 7) - G. L. Adonias, H. Siljak, M. T. Barros, N. Marchetti, M. White and

S. Balasubramaniam, “Reconfigurable Filtering of Neuro-Spike Communications using

Synthetically Engineered Logic Circuits,” in Frontiers in Computational Neuroscience,

vol. 14, pp. 91-106, October 2020.

Summary: In the second journal publication, systems theory was applied on top of

our logic circuits analysis partially contributing to RQ2 and RQ3. In this paper,

we proposed computational models of reconfigurable neuronal filters and a transfer

function as the basis for the proposed mathematical framework (Fig. 5.1c). The

investigation was mainly conducted on the capabilities of a logic circuit to attenuate

high-frequency firing of action potentials and how this filtering capability can be

controlled through the synaptic properties of the output cell of the whole logic circuit

aiming to widen or narrow a specific frequency window. The proposed framework

opens new opportunities for the field of in silico pharmacology, which is also known

as computational therapeutics or computational pharmacology and can be defined as

a research field that encompasses the development of techniques for pharmacology

hypothesis testing. It uses software to mine and to analyse biological and medical data

alongside the generation of in vitro data to create and fine-tune a model that could

ultimately provide advances in medicine and therapeutics [105].

Contributions: Our results suggested that neuronal logic circuits can work as digital

filters that could be fine-tuned after potential deployment inside the human brain

through modification of the synaptic weights of its connections. Thus, helping smooth

out abnormal frequencies that are mostly evoked by neurological disorders. We
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performed analysis on the ratio of frequency response and its analogous metric in

decibels, which represents the magnitude (gain) and, showed a clear difference in the

levels of attenuation between different neuronal circuits. Also, we proposed a metric

of counter-efficiency that suggested specific frequency bands in which different circuit

arrangements differed among themselves on their respective optimal performance.

This allowed a more scenario-based manipulation of the filter where, for instance, a

subject could be awake or asleep. This framework could also provide a platform for

the discovery and design of new drugs contributing to the state-of-the-art in synthetic

neurobiology and helping to bridge the gap between biophysical models and systems

theory engineering.

3. PHYSBIO (Chapter 8) - G. L. Adonias, H. Siljak, M. T. Barros and S. Balasubrama-

niam, “Neuron Signal Propagation Analysis of Cytokine-Storm-induced Demyelination,”

Submitted to Physical Biology Journal, June 2021.

Summary: In the third journal publication, which is currently under review, the structure

of the neuron is taken into account. This provides a more in-depth analysis of how

external processes and agents can compromise neuronal communications. In this paper,

in particular, the effects of a viral infection capable of crossing the blood-brain barrier

(BBB) is investigated. Once inside the nervous system, viruses can infect a host cell

and replicate themselves triggering an immune response to fight the infection and, as a

side effect, damaging healthy tissue.

Contributions: In this work, an end-to-end model that accounts for immune-induced cy-

tokine storms and the demyelination induced by their inflammatory effects is proposed.

As discussed in Section 3.2, demyelination affects the propagation and conduction

of action potential through the axonal pathway. Therefore, this work also proposed

a linear model of demyelination inspired by control systems theory that predicts the

signal effects on action potentials that are expected from a demyelinated axon. The
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model also maps components regarding spike width, peak potential and delay for spike

initiation.

4. TNSRE (Chapter 9) - G. L. Adonias, C. Duffy, M. T. Barros, C. McCoy and S.

Balasubramaniam, “Analysis of LPC-induced Demyelination

on Neural Molecular Communications,” Submitted to IEEE Transactions on Neural

Systems and Rehabilitation Engineering, August 2021.

Summary: Our fourth and last journal submission, currently under review, also focuses

on the structure of the neuron and it shows, allied with wet-lab experiments, how

fast toxic substances such as lysolecithin induce demyelination and, it provides an

insight into the remyelination process which can not bring the myelin sheath back to

its original proportion.

Contributions: Using a myelination index calculated with microscopic images of

brain slices, this work proposes a model for demyelination under three different

scenarios: neuronal compartments (single neuron), bipartite synapse and neuronal

network. Therefore, giving us the possibility of predicting the spiking rate of neurons

under demyelination or remyelination processes.

5. NANOCOM (Chapter 10) - G. L. Adonias, M. T. Barros, L. Doyle, and S. Balasubra-

maniam, “Utilising EEG Signals for Modulating Neural Molecular Communications,”

in Proceedings of the 5th ACM International Conference on Nanoscale Computing

and Communication 2018 (ACM NanoCom ’18), Reykjavik, Iceland, Sep. 2018.

Summary: An important feature of neuronal networks is the ability to modulate sensory,

motor and cognitive information [29, 106]. Therefore, the modulation of artificial

information was the first application addressed in the first conference publication

(NANOCOM). This publication proposed a system that can predict the activity of

a network of neurons [107] and send information that defines the probability of
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vacant periods that implanted nano-devices can use to stimulate neurons, e.g. light

stimulation [53, 55, 56, 70], aiming to minimise interference with the natural signalling

(see Fig. 5.2). This work helped to understand the possibility of potential disruption

caused by a synthetically engineered component, such as a neuronal logic gate.

EEG Probes External
Transceiver

Sub-dura
Transceiver

Scalp

Skull

Dura

Cortex

WiOptND

Nanowires

LED

Fig. 5.2 Architecture of a EEG-WiOptND-powered system for the insertion of artificial
data into the brain [108].

It was considered that the neurons fire spikes at a rate following a Poisson process and

they had different spike firing probabilities providing a highly stochastic communica-

tion channel. A neuronal network with different types of neurons is simulated with a

stimulation point for each cell to represent their spontaneous firing and a few points

for artificial stimulation that was chosen based on the neuron’s connection probability

and topology of the network inferred from the raster plot in [107].

Contributions: A numerical analysis was performed on the data collected from the

simulations to show how the capacity and the information rate of the channel would

behave with the increase in artificial bits transmitted. The results suggest that we can

achieve higher capacity with a lower range of transmitted bits, while the information

rate oscillates at high values of the mid-range quantity of transmitted bits. This

publication partially addresses RQ1 showing that a synthetically engineered light-

sensible neuron can be controllable over specific periods for the dispatch of artificial
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information through the cortex and, possibly, for the replacement of malfunctioning

neurons.

6. MOLCOM (Chapter 11) - G. L. Adonias, A. Yastrebova, M. T. Barros, S. Balasubra-

maniam, and Y. Koucheryavy, “A Logic Gate Model based on Neuronal Molecular

Communication Engineering,” in Proceedings of the 4th Workshop on Molecular

Communications, Linz, Austria, Apr. 2019.

Summary: Lastly, in our second conference publication (MOLCOM), we partially

investigated RQ1 and RQ3 by engineering the synapses in a three-neuron arrangement

where two neurons act as inputs and one as the output of the gate. From this computa-

tional model, we were able to expand the analysis into a more information-theoretical

approach which resulted in our first journal publication (TNB).

Contributions: We proposed eight different arrangements with diverse types of neurons

in which five of the configurations worked as OR gates and the other three as AND

gates. We also identified that not only their connections but the types of neurons played

a role in the gating performance of the computing function.
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Utilizing Neurons for Digital Logic Circuits:
A Molecular Communications Analysis

Geoflly L. Adonias, Anastasia Yastrebova, Michael Taynnan Barros, Yevgeni Koucheryavy Senior Member, IEEE,
Frances Cleary, and Sasitharan Balasubramaniam, Senior Member, IEEE

Abstract—With the advancement of synthetic biology, several
new tools have been conceptualized over the years as alternative
treatments for current medical procedures. As part of this
work, we investigate how synthetically engineered neurons can
operate as digital logic gates that can be used towards bio-
computing inside the brain and its impact on epileptic seizure-
like behaviour. We quantify the accuracy of logic gates under
high firing rates amid a network of neurons and by how much
it can smooth out uncontrolled neuronal firings. To test the
efficacy of our method, simulations composed of computational
models of neurons connected in a structure that represents a logic
gate are performed. Our simulations demonstrate the accuracy
of performing the correct logic operation, and how specific
properties such as the firing rate can play an important role in
the accuracy. As part of the analysis, the mean squared error is
used to quantify the quality of our proposed model and predict
the accurate operation of a gate based on different sampling
frequencies. As an application, the logic gates were used to
smooth out epileptic seizure-like activity in a biological neuronal
network, where the results demonstrated the effectiveness of
reducing its mean firing rate. Our proposed system has the
potential to be used in future approaches to treating neurological
conditions in the brain.

Index Terms—Logic gates, synthetic biology, nano communi-
cations, nanonetworks, Boolean algebra.

I. INTRODUCTION

It has been over a decade since Molecular Communications
(MC) was introduced as a new communication paradigm
aiming to conceptualize and build communication systems
inspired by natural biological processes [1]–[4]. One of those
MC systems is known as neuro-spike communication [5],
where information is transferred between two neurons through
an electro-chemical process which triggers an electrical im-
pulse called action potentials. We are interested in the in-
terchangeable action potentials information that comprises of
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Fig. 1. Neuronal logic gate inside a cortical column.

periods with high membrane polarization, i.e. spikes, which is
more suitable to analyse neural activity in population settings.
This information can not only be encoded using any of
the already proposed encoding techniques [6], [7], but also
be modulated [8]–[10] mimicking a traditional communica-
tion system, and potentially presenting itself as a tool for
cognitive enhancement and treatment of neurodegenerative
diseases [11], [12].

In the 1940s, McCulloch and Pitts envisioned that the brain
would be composed of units with logic gating capabilities [13].
During that time, the interest in their work in neuroscience was
poor simply because neuronal cells are much more dynamic
than simple digital logic gates, and there were no tools
available to control such biological activity. However, since
published, their seminal work contributed to advancements in
artificial neural network and machine learning theories [14].
Recently, the interest in creating biological logic gates for the
brain is picking up due to the emergence of cellular reprogram-
ming towards augmenting their functioning through synthetic
biology [15]. The vision of creating logic operating engineered
systems to interact between natural cells and engineered cells
(i.e. bio-nano machines) has the potential to create better
alternatives for the treatment of diseases at the cellular level
by allowing the control of their dynamics [16].

The idea of using cells in the brain as computing agents
has been recently progressed by many works. One example
is the work of Vogels and Abbott [17], where they investi-
gated the signal propagation in networks of integrate-and-fire
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models of neurons and found that by either strengthening or
weakening specific synapses, different types of logic gates
may arise within the network. Goldental et al. [14], used
neurons function and communication dynamics to propose
dynamic logic gates that work based on their historical ac-
tivities, interconnection profiles, as well as the frequency of
stimulation at the input terminals. Song et al [18] took a
different approach, where they proposed that the interaction
of astrocytes in a tripartite synapse may be able to control
the logic gate performance of neurons. Although they are also
working with non-neuronal cells, the neurons used are all of
the same morphological and electrical types. Even with this
tremendous effort, these works don’t explore the full impact
of logic gate plurality inside a type-rich biological neuronal
network (Fig. 1). Further investigation of novel logic gate
constructions are needed towards more computing reliability
within the chaotic activity within these networks.

Synthetic Biology has achieved success in modifying or in-
heriting new functions in biological cellular systems and com-
munications [19], [20]. For the past few years, we have seen
quite a lot of progress in the manipulation and engineering of
the behaviour of mammalian cells [21]. This paved the way for
more sophisticated approaches with regards to neuronal and
non-neuronal cells (e.g. astrocytes) that can be synthetically
engineered to enable control of their dynamic behaviour and
functionality, aiming at the correction of abnormalities at a
cellular level. With the advance of synthetic biology and
nano-scale networks [22], many components ranging from
logic gates [14], [17], [23], [24] to integrated circuits such
as oscillators [25] have also emerged. To date, there has not
been a direct application of synthetic biological-based logic
gates for neurological diseases.

In light of numerous applications that can have an impact
on biological systems [26], researchers have been investigat-
ing computational modelling of neurodegenerative diseases
such as Alzheimer’s disease (AD) [27], Parkinson’s disease
(PD) [28] and Epilepsy [29]. Neurodegenerative diseases can
be seen as a progressive loss of specific neuronal populations
that could lead to death or a disabled life. The modelling of
those degeneration processes may help substantially improve
our understanding which in turn has the potential to speed
up the research of new therapeutic solutions. This work is
inspired by the medical challenges in Epilepsy, to deliver
a new system that uses synthetic biology and molecular
communications. The treatment of Epileptic seizures is truly
challenging, where drugs are not effective or have horrendous
side effects [30]. At the same time, deep-brain stimulation
techniques are not patient-friendly and Epilepsy correcting
surgery has tremendously negative effects on the lifestyle of
patients [31].

Information processing in the brain involves the propagation
of action potentials through countless numbers of specific neu-
ronal networks. This enables the brain to process various types
of information that can range from controlling the functions
of organs within an organism to coding and storing long-
term memory, as examples. The synchronous uncontrolled
firing of spikes in large regions of the brain that can occur
spontaneously can be related to neurological diseases, and one

example is epilepsy [32]. Based on this, spiking firing filtering
techniques based on synthetic logic gates using, such as, digital
logic gates that can improve the control of neuron activity to
normal levels. This novel system can play an important role in
smoothing out uncontrolled neuronal firing and consequently
reducing the effects of seizures. The practical positioning
of those gates also poses an issue on the feasibility of this
solution. A suitable way of achieving this efficient insertion
and positioning would be by using gene therapy techniques
that may be invasive [33] or noninvasive [34] with the dispatch
of the synthetic circuits through the bloodstream. To the best
of our knowledge, there is no work in the literature on neuronal
logic gates that are applicable as potential treatments for
neurological disorders.

In this paper, we present a novel theoretical system that
couples neuronal logic gates in a biological network of neu-
rons. We investigate the effects of filtering high-frequency
multi-unit firing caused by Epileptic seizures by randomly
distributed logic gates within a validated computational frame-
work. Unlike the aforementioned works, this paper does not
perform any fine-tuning in the network, where the gates are
built with three models of neurons with different morpho-
electrical characteristics between each other. In our study, the
type-rich neuron environment is taken into consideration for
improved integration with the existing functioning network.
To help quantify the ability of processing spiking information,
we developed a queueing theory model that analyses the mean
squared error (MSE) as a function of the inter-spike interval
(ISI) at different sampling frequencies. Our work is built on
top of our previous efforts [23] which only analyzed the
performance of the gates as isolated units for three different
inter-spike intervals (ISI) using a constant stimulus. The main
contributions of this paper are as follows:

• Neuronal logic gates are built, controlled and simu-
lated within large neuronal networks using computa-
tional models of neurons [35]. We use three models of
neuron cells to create a single synthetic logic gate capable
of performing logic operations at a cellular level. Two of
them act as inputs so the output cell can receive stimuli
from natural synaptic connections avoiding bias towards
the intensity of any external stimulation.

• Analysis of performance for the gates simulated in
isolation and inside a network of neurons. We analyze
the dynamic behaviour of neuronal communications that
could affect the operation of the gate and consequently
the network, quantified in terms of accuracy. It is expected
that this analysis gives an insight into how parameters of
the synaptic connection and morpho-electrical character-
istics of the cell, as well as the firing rate, would affect
how accurately the gates process the inputs.

• Proposal of a queuing model for the input and
gating of action potentials as units of information.
The advantage of a queueing-theoretical model is that
complex neuronal networks can be studied as a single
element representing the collective behaviour of those
cells. The model is capable of predicting the accuracy
of the synthetic gates, and this is validated using mean
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squared error (MSE) as a function of the inter-spike
interval (ISI) at different sampling frequencies.

• We quantify the impact of randomly placed logic gates
in smoothing seizure-like activity. Based on the pre-
sented model of seizure-like activity, we manipulate the
neuronal ionic concentration of K and Na to regulate the
spiking rate when the disease is triggered. We couple this
model with our computational framework and evaluate
the decrease in mean spiking rate when neuronal logic
gates are placed inside the biological neuron network.

The remainder of this paper is organized as follows, in
Section II an overview of neuronal properties and how they
communicate with each other is provided. The construction
of neuronal logic gates, their diverse types and the queue-
theoretical analysis are discussed in Section III. Section IV,
presents a mathematical framework of the role played by ionic
dynamics on seizure-like events is presented. Section V con-
tains all details regarding the simulation, network connectivity
and its parameters, and the results from those simulations are
presented and discussed in Section VI. Finally, in Section VII
the conclusions for this work are presented.

II. NEURON COMMUNICATION BACKGROUND

Neuronal network communications allow the propagation
of spikes through a population of neurons transferring infor-
mation inside the brain. Bio-computing approaches based on
the communication of neurons will rely on this propagation
behaviour and its relation to the neuron properties as well as
the characterization of neuronal communications. Therefore,
before presenting the model of logic gates using neurons (Sec-
tion III), the morpho-electrical characteristics, the columnar
and laminar organization properties of neurons as well as
the compartmentalized Hodgkin-Huxley model for neuronal
communications will be introduced.

A. Neuron Properties

Neuronal cells can be classified in terms of their mor-
phology, electrophysiology, projections, position in the brain
and the proteins and genes they express. The models of
neurons used in this work, collected from [35], are classified
only based on their morphological and electrical properties
(morpho-electrical characteristics) as well as which cortical
layer they are from (columnar and laminar organization). The
classification method used in this work is detailed below.

1) Morpho-electrical Characteristics: Well-established
features in the soma of the cell and its dendritic and axonal
arbours are sufficient for the classification of different
morphological cells. In terms of size, cortical neurons can
be categorized as small neurons (8 − 16µm) along with
neurons from the hippocampus, olfactory bulb and dorsal
horn. Axonal features play a major role in distinguishing
inhibitory types while excitatory types can be better identified
by their dendritic features [35].

Different morphological types (m-types) of cells can have
diverse firing patterns. These patterns are generated in re-
sponse to the injection of step currents in cortical neurons.
From the 11 different electrical types (e-types) identified by

Stratum Oriens

Stratum 
Pyramidale

Stratum 
Radiatum

Stratum 
Lacunosum-
Moleculare

a) Characterized L23 PYR neuron b)   Compartments c)    Equivalent RC circuit

Fig. 2. Cell comparmentalization; a) A morphological structure of a layer
2/3 pyramidal neuron, b) Compartment model of a Layer 2 pyramidal
neuron including 4 compartments: stratum oriens, stratum pyramidale, stratum
radiatum and stratum lacunosum-moleculare, c) The equivalent RC circuit
module.

Markram et al [35], all m-types used in this work are burst
Non-accommodating (bNAC) e-types.

2) Columnar and Laminar Organization of the Cortex:
The cerebral cortex is composed of neurons arranged into six
horizontally and dispersed layers. These layers have different
characteristics such as thickness, size, cell type and cell density
showing a “laminar” organization and subdividing the cortex
into disparate regions and areas. These layers are known as
(1) Molecular layer, (2) External granular layer, (3) Pyramidal
layer, (4) Inner granular layer, (5) Ganglionic layer and (6)
Multiform layer.

Despite the horizontal layering, cortical regions display
vertical connections that are of prime importance and take
two forms: mini-columns (also called, micro-columns) with
approximately 30 − 50 µm in diameter and when activated
by peripheral stimuli, it generates the macro-columns, with a
diameter of approximately 0.4− 0.5 mm [36].

B. Neuronal Communications

1) Neuron-to-neuron Communication: Communication be-
tween neurons is performed through electrochemical synapses.
Action potentials travel down the axon of the pre-synaptic cell
and by the time it reaches the axon terminal, it stimulates the
release of synaptic vesicles inside the synaptic cleft. These
vesicles contain neurotransmitters that bind to neuro-receptors
in the dendrites of the postsynaptic cell, on the other end
of the synaptic cleft, either depolarizing the membrane. The
depolarization starts in a potential state of approximately
−65 mV and moves up to the point it reaches a threshold
which is high enough to trigger the initiation of an action
potential (excitatory) or polarizing the membrane even more,
which in turn blocks the postsynaptic cell of firing any spikes
(inhibitory) [23], [37]. In larger networks, the balance between
inhibitory and excitatory connections helps in encoding infor-
mation through the neuronal network [38].

After the membrane potential reaches its maximum peak
of depolarization, it starts to repolarize itself towards its
resting potential right after a spike is fired. The potential gets
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hyperpolarized for a very short period which is known as
refractoriness and can be subdivided into absolute and relative.
During the absolute refractory period (ARP), the cell is unable
to fire again regardless of how strong the stimuli are and it
takes about 1−2 ms followed by the relative refractory period
(RRP) during which a cell can fire again if the applied stimulus
is stronger than it was when applied at its resting state [37].

To model such a complex system, we present a simpli-
fication of the model that is used in the NEURON simu-
lator [39] based on the compartmentalized Hodgkin-Huxley
model which is one of the most biologically plausible models
for computational neuroscience [40]. We adopt the same
approach as the Hodgkin-Huxley due to its mathematical
tractability. In this model, the cell is broken down into J
equal length parts, and the spike propagation is modelled in
one compartment travelling to all others (Fig. 2).

We can describe a single compartment model with the
following proposed by Pospischil et al [41]

Cm
dV
dt

= −gleak(V −Eleak)−INa−IK−IM−IT−IL, (1)

where V is the membrane potential, Cm is the specific
capacitance of the membrane, gleak is the resting (leak)
membrane conductance, Eleak is its reversal potential. INa
and IK are the sodium and potassium currents responsible for
action potentials respectively, IM is a slow voltage-dependent
potassium current responsible for spike frequency adaptation,
IL is a high-threshold calcium current and IT is a low-
threshold calcium current. These voltage-dependent currents
are variants of the same generic equation which is described
as

Ix = gxm
MhH(V − Ex), (2)

where the current Ix is expressed as the product of the synaptic
conductance, gx, activation (m) and inactivation (h) variables,
respectively, and the difference between membrane potential
V and the reversal potential Ex. Some ionic gates, such as
Potassium, do not have inactivation variables so its activation
is represented by the variable n, and described as follows

Ix = gxn
N (V − Ex). (3)

The gating of the channel is derived from the following
first-order kinetic scheme

C
α(V)−−−−⇀↽−−−−
β(V)

O, (4)

where O and C are the open and closed states of the gate,
and α(V ) and β(V ) are the transfer rates for each respective
direction. The variables m, n and h represent the fraction of
independent gates in the open state, following the conventional
approach introduced by [42] and stated as

dm
dt

= αm(V )(1−m)− βm(V )m, (5)

dn
dt

= αn(V )(1− n)− βn(V )n, (6)

dh
dt

= αh(V )(1− h)− βh(V )h. (7)

To consider conductance-based inputs to the neuron in (1),
it is necessary to add the effects from the propagation and
reception of neurotransmitters from another neuron in the
synaptic cleft. We present a simplified model of the synaptic
input from pre-synaptic cells, in which the neurotransmitter-
activated ion channels (Isyn) is represented as an explicitly
time-dependent conductance (gsyn), and it is defined as [43]

Isyn = gsyn (V − Esyn) , (8)

where the parameter Esyn as well as gsyn are used to describe
the many different synapses types. Esyn may assume different
values according to receptor types, the four major transmitters
used for communication in the nervous systems are listed in
Table I [43], where GABA means gamma-Aminobutyric acid
with two different classes “A” and “B” and NMDA means
N-Methyl-d-aspartic acid.

TABLE I
Esyn FOR DIFFERENT RECEPTORS.

Neurotransmitter Neuroreceptor Esyn (mV)
Glutamate Non-NMDA 0
Glutamate NMDA 0

GABA GABAA −70
GABA GABAB −100

Based on this, gsyn can be defined as through a superposition
of exponentials

gsyn =
∑

f

ḡsyn e−(t−t(f))/τ H(t− t(f)) , (9)

where τ is a time constant, ḡsyn is the peak synaptic conduc-
tance, t(f) is the arrival time of a presynaptic action potential
and H(·) is the Heaviside step function. The t(f) has a non-
null value only when the membrane potential of the presy-
naptic compartment Vpre crosses a threshold thpre, indicating
a spike has occurred. This threshold-crossing mechanism for
spike propagation is known as event-based synapse and it can
be defined as

t(f) =

{
t(f), if Vpre ≥ thpre
∅, otherwise.

(10)

This can be thought of for each synaptic event as several
neurotransmitters are released and bound to the postsynaptic
terminal [44].

Extending from (1) to include a new current term that
comprises of the compartments that synapses may occur, we
simply added the term (8) on the right-hand side, as follows

Cm
dV
dt

= −Ileak − INa − IKd
− IM − IT − IL − Isyn, (11)

where Ileak = gleak(V − Eleak).
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Fig. 3. Graphical visualization of network connectivity and each connection
probability (in percentage) between pairs of neurons.

In Section II-A, we presented the differences of morpho-
electrical characteristics of neurons and their columnar and
laminar organization that create a variety of neuronal networks
with different types of cells. To incorporate these properties
into the model presented in this section we need to use
three different approaches. Their morphological properties will
dictate the number of compartments of a cell type, which prob-
ably indicates that pyramidal, granule and fusiform cells will
have different V propagation patterns based on their different
number of compartments. For example, in Fig. 2, we divided a
layer 2 pyramidal neuron into 4 compartments (stratum oriens,
stratum pyramidale, stratum radiatum and stratum lacunosum-
moleculare). By using the NEURON simulator, we can capture
morphological properties with precision through the validated
models of Markram et al [35] in which compartments are
already provided. In a similar manner, also using the models
from [35], it is necessary to change the following parameters in
order to shape the electrical characteristics and obtain a type-
specific spiking activity, other than the types already available:
m, n, h, α(V ), β(V ), gx, gsyn, and initial values of Eleak and
Esyn. Lastly, based on the cell type, we define a network of
excitatory neurons that consider the connection probabilities
between them as defined in the Neocortical Microcircuit Col-
laboration Portal1. We use a simple directed graph to capture
this network connectivity pattern, as shown in Fig. 3. Since
the model presented in that portal went through a complete
validation work, and since we use their models including the
constrains of connection probabilities and synaptic weight, our
model is in accordance to their computational approach and
simulations.

1https://bbp.epfl.ch/nmc-portal/welcome

2) Role of the Threshold in Event-based Synapses: As
aforementioned in Section II-B1, for a spike to be fired,
the membrane potential of the cell compartment to reach
a threshold during its depolarization state, the threshold for
spike initiation varies with stimuli, cell type and the history
of activity of the cell. It is not yet clear what characteristics
can cause this variability which may affect the performance
of the gate. According to Platkiewicz and Brette [45], even
though the concept of spike threshold may be different for in
vivo, in vitro and computational experiments, the threshold in
brain cells depends on several parameters such as stimulus,
type of cells, synaptic conductances and properties of ionic
channels.

For a synapse, with each action potential arrival at the
presynaptic terminal at time t(f), a specific number of neu-
rotransmitters may be released into the synaptic cleft and
has a probability of binding to the neuroreceptors at the
postsynaptic cell. This release process is proportional to the
shape and energy of the incoming action potential. An event-
based synapse mimics this chemical process and sends an
event with a synaptic weight to the postsynaptic cell that
may trigger an action potential and consequently propagate
information through the network.

To the best of our knowledge, there are no works that
utilize realistic models of neurons, and especially the neuron
models proposed by Markram et al [35], where the gates
are constructed from heterogeneous neuronal arrangements
and controlled by their respective threshold for event-based
synapses.

III. NEURONAL DIGITAL LOGIC GATES AND CIRCUITS

In this section, we describe the construction of neuronal
logic gates and how queueing theory can be applied to
neuronal circuits to predict and assess how the stimuli in the
pre-synaptic terminal are being processed by the post-synaptic
cell.

A. Single Logic Gates

Eight neuronal logic gates were built, including five differ-
ent OR gates and three different AND gates. The truth table
for both of these types of gates is depicted in Table II.

TABLE II
TRUTH TABLE FOR BOTH GATE TYPES.

Truth Table
I1 I2 OAND OOR
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1

For an AND gate, both inputs must be non-null to have a
non-null output. On the other hand, an OR gate can send out
non-null outputs not only when both inputs are active but also
when either one of them is active while the other is not. All
cell types used to build the gates are listed in Table III [35],
[46].
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TABLE III
TYPES OF CELLS USED TO BUILD THE GATES.

Cell Types

L1
DAC Descending Axon Cell
HAC Horizontal Axon Cell
SAC Small Axon Cell

L2/3

MC Martinotti Cell
NBC Nest Basket Cell
BTC Bitufted Cell
DBC Double Bouquet Cell
LBC Large Basket Cell

L4
DBC Double Bouquet Cell
SBC Small Basket Cell
MC Martinotti Cell

L5 BP Bipolar Cell
SBC Small Basket Cell

L6 MC Martinotti Cell

1

2

3

(a) (b)

Fig. 4. Neuronal logic gates; (a) set of neuronal logic gates built using the
models of neurons shown in Table III in a traditional representation and (b)
potential real connection of neurons as a gate (merelly illustrative).

For each gate, three different types of cells were arranged in
a way that two of them should operate as the inputs of the gate
and the third one as the output (Fig. 4(b)). The idea is to keep
the inner connections of the gate, i.e. the connection between
the inputs cells with the output cell, fixed at their default
parameters and respective connection probabilities according
to the type of cells being connected.

Combinations of cells (as illustrated in Fig. 4(a)) were cre-
ated largely based on their respective connection probabilities.
Since the synaptic weight was kept at a fixed starting value,
the higher the probability of two cells establishing a synapse,
the higher the influence of the pre-synaptic cell on the post-
synaptic cell. In this case, OR gates should have stronger inner
connections when compared to AND gates so we can achieve
the desired behaviour, as presented in Table II.

In this work, a simple On-Off Keying (OOK) modulation
is implemented where a spike is considered as a bit ‘1’ and
its absence a bit ‘0’ in each time slot (usually 5 ms long)
for the inputs into the synthetic gates. The example spikes
that propagate along each neuron of a gate is illustrated in
Fig. 5. When reproducing a [1, 1] input with both L1-HAC
and L1-DAC cells (Fig. 5 left side), the spikes should arrive
at L23-MC with a minimum amount of time shift between the
spikes to avoid misprocessing of the inputs by the output cell.

B. Queuing Theory in Neuronal Circuits

Queueing theory is applied in our analysis to evaluate the
response time and accuracy of the proposed neuronal logic
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OR (L1_HAC, L1_DAC, L23_MC) AND (L4_MC, L6_MC, L1_DAC)
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0 11 1 0 00 1

Fig. 5. Basic simulation with inputs [0, 0], [0, 1], [1, 0] and [1, 1] for both
OR and AND gates with a 10-ms time slot. Inputs 1 and 2 are the first and
second rows respectively, the last row is the output.

gates. When looking into the times of arrival of spikes, in
other words, considering only the electrical behaviour of an
electrochemical synapse, even though there are two inputs, we
assume that there is only one queue at the server in which the
inputs arrive at a unified rate. At any given moment, only
one impulse is carried by the cell and any impulse coming
at a rate higher than the service rate may be lost, otherwise,
the cell may be able to carry the stimulus and fire again if
the input is strong enough to trigger an action potential. The
server utilization over a certain period, however, depends on
the rate of the impulse arrival to the presynaptic terminal.

1) Queueing Analysis: Consider three neuronal cells ar-
ranged as a gate, as illustrated in Fig. 4(b), in which two of
them are inputs 1 and 2, respectively, and the third cell is the
output. We assume that inputs 1 and 2 have poissonic rates of
λ1 and λ2 spikes per second, respectively, and the output cell
“processes” those inputs with a rate of µ spikes per second.

Let’s also consider that each input has an individual inter-
spike interval, ∆I1 and ∆I2, and an inter-neuronal spike
interval between both inputs, ∆IN . It is safe to assume that
from the perspective of the output cell, the inputs have a
merged rate, λ, defined as [47]

λ = λ1 + λ2, (12)

which means that there is only one input with rate λ and,
analogously, ∆IN as a unified inter-spike interval. In other
words, inputs arrive at time t(f) + k · ∆IN , as depicted in
(10), where k is a zero-indexed order of arrival.

The system now looks like a single-queue and single-server
(Fig. 6). However, if µ < λ, there will be no waiting time
and, any spike that is not processed on a first come first serve
basis, will be lost.
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μ
Single queue

In1(λ1) 
ΔIN

λ = λ1 + λ2

In2(λ2) 

Fig. 6. Illustration of merged rates of pre-synpatic spikes into a single queue
to be processed by a single server as described in Section III-B1. ∆IN may
have different values for OR and AND gates.

In the case of an OR gate, the output cell should fire when
either of the inputs or even both of them fire, hence

∆I1,2 ≥ 2 ·∆IN , (13)

on the other hand, a cell working as an AND gate should fire
only when both inputs fire together. So

∆I1,2 ≤ Rp+ ∆IN . (14)

where Rp is the refractory period of the output cell. There are
different rules for the value of ∆IN when either input fires
(OR gate) or both inputs fire (both gates), thus

{
∆IN ≥ Rp, either input fires,
0 ≤ ∆IN ≤ ts, both inputs fire,

(15)

where ts is some threshold in milliseconds allowing the cell
to process neighbouring spikes as [1, 1] input.

If an input arrives with time t(f) (9), then the probability
of another input arriving before t(f) + ts is

P (1|[t(f), t(f) + ts]) = 1− e−λts (16)

where for an AND gate, the smaller the ts, the better to evoke
a spike in the output. In the case of an OR gate, we are also
interested in another input arriving after t(f) + ts, which will
transform into

P (1|[t(f), t(f) + ts]) = e−λts (17)

Using both (16) and (17) and by setting a probability
threshold for the reconstruction of the queue, it is possible
to predict the output of the server with server rate µ which is
based on the type of gate and the rate λ and then calculate
the accuracy in relation to the expected output in which both
inputs are known. This accuracy should be compared to the
approach for calculating the difference between the actual
output of the gate and the expected output. The model is
further validated in Section VI-A, where we employ the Mean
Squared Error (MSE) analysis.

IV. IONIC CONCENTRATION DYNAMICS ON SEIZURE-LIKE
EVENTS

Modelling of neurodegenerative diseases is a hot topic under
the area of computational pathology. Many models have been
proposed with great advancements on their validation through
wet-lab experiments [48]–[50]. They generally are based on
different modelling approaches. However, approximations of
their neural activity can be relied on conventional approaches

to not particularly describe the disease but to quantify the
impact of it on the general biological system functions [51].

The Hodgkin-Huxley equations, used in our modelling,
make the reasonable assumption that intra- and extracellular
ion concentrations of sodium and potassium are constant
although it is not clear yet how valid this assumption can be
for other cases. In mammalian brains, typical ionic currents
may have a higher impact on ion concentrations because the
neurons are small and the networks are very dense [52].
By looking at their dynamics, one can regulate the spiking
rates obtained by the conventional Hodgkin-Huxley model and
mimic both the normal and seizure-like neural activity.

Several types of epilepsy have been implicated with defi-
ciencies in extracellular potassium ([K]o) regulation. In order
to take into account the effects of ion accumulation and regula-
tion, let’s first present the reversal potential Ex (Section II-B,
Equations (2) and (3)) in terms of the instantaneous intra- and
extracellular ion concentrations

ENa = 26.64 · ln
(

[Na]o
[Na]i

)
, (18)

EK = 26.64 · ln
(

[K]o
[K]i

)
. (19)

where ENa and EK are the reversal potential of the Sodium
and Potassium channels respectively.

The dynamics of the concentration of extracellular potas-
sium and intracellular sodium ions are given by

τ
d[K]o
dt

= γβIK − 2βĨpump − Ĩglia − Ĩdiff, (20)

τ
[Na]i
dt

= −γINa − 3Ĩpump, (21)

where the concentrations are in mM, τ = 103 balances
the time units, γ = 4.45 × 10−2 is a factor that converts
the membrane currents into mM/s, β = 7 is the ratio of
intracellular to extracellular volume and IK and INa refer to
the ionic currents first described in Equations 2 and 3. The
pump, glia and diffusion molar currents (also measured in
mM/s) are given by

Ĩpump = ρ

(
1

1 + e(8.33−0.33[Na]i)

)
·
(

1

1 + e(5.5−[K]o)

)
,

(22)

Ĩglia = G
(

1 + e(7.2−0.4[K]o)
)−1

, (23)

Ĩdiff = ε([K]o − kbath), (24)

where the default parameters are set as ρ = 1.25 mM/s,
G = 66.666 mM/s, and ε = 1.333 Hz and kbath = 4
mM represents the potassium concentration in the reservoir.
The intracellular potassium ([K]i) and extracellular sodium
([Na]o) concentrations are obtained as

[K]i = 140 mM + (18 mM− [Na]i), (25)
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[Na]o = 144 mM− β([Na]i − 18 mM), (26)

where it is assumed the total amount of sodium is conserved,
sodium is transported across the membrane predominantly
through sodium membrane current and there is a relation
between the transport of both sodium and potassium [52].

V. SIMULATION MODEL

In this section, the simulation model for a single neuronal
logic gate as well as the application case-study scenario for
the suppression of epilepsy, are presented.

A. Single Gate

The single neuronal logic gates were simulated in two
ways. First, they were individually analyzed and simulated
in isolation, where their respective accuracy values were
evaluated and those results were fitted to the model described
in Section III-B1. In isolated form, their configuration is
illustrated in Fig. 4(b).

For all simulations, intrinsic parameters of the cell were
kept at their default values (such as the length and diameter
of each compartment of the cell), and all other parameters
of the simulator required to reproduce the desired behaviour
are shown in Table IV, where synaptic weight influences
the spiking behaviour of one neuron has on another through
either exciting or inhibiting the post-synaptic cell by setting
to positive or negative values respectively; the time slot for
sampling the spike train is set to 5 ms as a fair amount of time
to account for absolute and relative refractory periods [37]; the
noise object is set to 1 to mimic a Poisson firing; tau is the
decay time constant of the synapse; threshold accounts for
the detection of a synaptic event as described in Section II-B;
delay is the time between source crossing threshold and
delivery event to target; the threshold for spike detection is
used to sample the spike trains into bits where any potential
higher than 0 mV in a specific time slot is a bit “1”. The
values of Rp and ts are only used when simulating the queue
model and they are not part of the simulation of the network.

TABLE IV
PARAMETERS FOR SIMULATION.

Simulation Parameters
Synaptic weight 0.04 µS
Simulation time 1 s

Time slot 5 ms
NetStim.noise 1

ExpSyn.tau 2
NetCon.threshold (AND) -64 mV
NetCon.threshold (OR) 5 mV

NetCon.delay 0
Threshold (spike detection) 0 mV

Rp 5 ms
ts 0 ms

1) Accuracy: All gates were tested in terms of accuracy
with variations in a few parameters to test their performance.
These parameters include their firing rate, λ, and the synaptic
threshold, th. As mentioned earlier in Section III-A, we are
using an OOK modulation to discretize the spiking activity
into binary code. Action potentials can shift and get slightly
delayed during propagation, and this is due to axonal charac-
teristics. This emphasizes the importance of having a time slot
with a fair length of time so there is a fair distinction between
different input combinations. The accuracy will measure how
correct the bit train is from the output cell with regards to
the ideal output that would be generated by an error-free
logic gate. In the simulations, random spike trains following
a Poisson process were stimulated. Poisson process usually
provides good approximations of the randomness of spike
trains across several trials [53]. For each simulation, since
the input is random, the number of spikes fired between both
inputs with the same rate is approximately the same.

The accuracy is calculated according to the following equa-
tion [54]:

A(E[Y ];Y ) =
P1,1 + P0,0

P1,1 + P1,0 + P0,1 + P0,0
(27)

where PY,E[Y ] is the probability of Y given E[Y ] in which
Y is the actual output and E[Y ] is the expected one and
Y &E[Y ] ∈ {0, 1}. PY,E[Y ] can be analogously defined as
the conditional probabilities in a binary symmetric channels
(BSC). Hence, P0,0 = 1 − P1,0, and P0,1 = 1 − P1,1. We
can calculate P1,1, for example, basically by counting the
number of bits there are for each input-output combination,
for example, the number of times bit 1 was sent and bit 1
was received (#B1,1) and, also, bit 1 was sent and bit 0 was
received (#B0,1), then P1,1 = #B1,1/(#B1,1 + #B0,1).

It is expected that the threshold for a synaptic event will
impact the accuracy results. As stated in Section II-B, the
threshold of the cell for initiation of an action potential is
dynamic and besides the synaptic events arriving at its pre-
synaptic terminals, morphological and electrical characteristics
of the cell also play a role as well as the rate with which these
events arrive. This means that a small change in the way a
post-synaptic neuron detects an input triggers changes in other
processes that affect the depolarization of its membrane. This
can lead to low accuracy results where false positive or false
negative results emerge affecting the system reliability.

2) Mean Squared Error (MSE): To validate the model
proposed in Section III-B, we estimated how far away from
our predictions were from the values of accuracy by using
Mean Squared Error. MSE is a way to measure the quality
of an estimator, and in our case, we want to determine the
effectiveness of our model concerning the real accuracy of the
gate operation.

Consider that A is the actual accuracy obtained from the
real output and that A is the predicted accuracy estimated by
our model, then the MSE for each point can be calculated as

MSE =
1

a

a∑

i=1

(Ai −Ai)2, (28)
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where a is the number of accuracy values. The value of a is the
bandwidth of the spiking activity or the number of different
frequencies with which the simulation is performed.

B. Neuronal Activity Behavior During Epileptic Seizures

Neuronal synchronization is the basis for fundamental brain
processes. In neurological diseases, such as epilepsy, neuronal
synchronicity, as well as the balance between excitation and
inhibition in populations of cortical neurons, can be modi-
fied [55], [56].

In this work, a study on brain seizures is conducted by
simulating the activity of neurons grouped in a cortical column
and by reproducing the stages of spikes before, during, after,
and recovery periods of epileptic seizures with a dynamic
firing rate. The frequencies for stimulation varies according to
results published by Alvarado-Rojas et al [55]. In a simulation
with time T = 1000 ms, the ranges of the firing rate γ
(spikes/s) for the various stages of the epileptic seizure in the
network are based on the following values

γ =





10− 30, if T ≤ 300,

10− 70, if 300 < T ≤ 650,

70− 180, if 650 < T ≤ 750,

0− 10, if T > 750,

(29)

where the evoked activity of the network also follows a
Poisson process. This procedure can also be described with
the pseudo-code presented in Algorithm 1.

Algorithm 1 Development of Epileptic Seizure Model
1: Inputs:

γ = {30, 70, 180, 10}
T = {0, 300, 650, 750, 1000}

2: Initialize:
C = {c1, ..., cn}

3: for c ∈ C do
4: for i : 0 → length(γ) do
5: stimulate c at (γi, [Ti, Ti+1])
6: end for
7: end for

Neuronal AND logic gates were inserted inside a network
with 10 neurons (two neurons per cortical layer) which was
built as a simpler model of a cortical micro-column to help
evaluate the effects of logic gates inside a neuronal network
that simulated different stages of an epileptic seizure. The
positioning of the gates between cortical layers is depicted
in Fig. 7.

VI. RESULTS AND DISCUSSIONS

In this section, we present a discussion over the results for
the logic gate analysis and its epilepsy case study.

A. Logic Gate Performance

For the single gate performance accuracy, we use the con-
figurations that are presented in Fig. 4(a). In the simulations
with isolated gates, two different analyses were performed.

CELL
1

CELL
2

CELL
N-1

CELL
N

LAYER 1

LAYER M

Fig. 7. Schematic of the connection of the neuronal logic gates in between
the N cells that forms the network with M layers. In this work N = 10 and
M = 5 where there are N/M cells per layer. The placement of a logic gate
in the network require the breakage of the natural connections between the
cells.

First, the spiking rate was increased and the accuracy of the
gates were computed, and the simulations used the parameters
shown in Table IV. In both Figs. 8(a) and 8(b), the accuracy
decreases as the firing rate increases, but they are decreasing
at different rates due to their different behaviours as shown
in Table II and Fig. 5. Even though the different versions
of both types of gates have very similar values of accuracy,
in Fig. 8(a) all of the AND gates configurations have very
similar behaviour, this may be due to the fact that, as depicted
in Table II, there is only one way for the gate to fire which
decreases the chances of misprocessing the inputs. Meanwhile,
since OR gates have more ways of firing an output (Table II),
the different arrangements may be affecting the processing of
the inputs by the output considering that the gates have a bit
less similar performance between each other when compared
to the performance of AND gates. Fig. 8(b) shows that OR
2 slightly stands out in performance with better accuracy
compared to the other OR gates. To obtain the mean and
standard deviation, the simulation ran five times.

Second, two gates were picked out, one of each type (OR2
because it showed a better accuracy in Fig. 8(b) and, AND1
was actually picked at random since all AND gates have a
similar performance), and the accuracy was computed based
on both the accuracy and the threshold at the presynaptic
compartment. In Fig. 9, it is noticeable that the accuracy has
a relationship with the threshold, thpre in (10), and spiking
rate of the neurons, λ1,2 in (12). As previously discussed, it
is expected that event-based thresholds impact the accuracy
results of the logic gates. Since the threshold for initiation of
an action potential of biological neurons is dynamic, and not
static as some artificial models of neurons, the spiking rate is
also considered as dynamic since the synaptic events arriving
at a postsynaptic cell, morphological and electrical character-
istics of the cell also play a role [45]. Generally speaking,
lower spiking rates with higher thresholds negatively affects
the accuracy of both types of gates. The results presented are
based on the mean from three simulation runs.

The effect of shifting the synchronization of the spikes
by up to 4 ms was also analyzed. The results, depicted in
Table V, did not show any specific trend when the shift was
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TABLE V
ACCURACY MEAN AND STANDARD DEVIATION VALUES FOR DIFFERENT DELAYS BETWEEN INPUTS.

Effect of Delay on Accuracy
Types AND 1 AND 2 AND 3 OR 1 OR 2 OR 3 OR 4 OR 5
Mean 0.9660 0.9530 0.9954 0.7595 0.8595 0.7630 0.7615 0.7720

Std Dev 0.00577 0.00604 0.00603 0.02871 0.02752 0.03059 0.03405 0.03039
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Fig. 8. Mean and standard deviation of the accuracy for the (a) three AND
gates and (b) five OR gates. Five simulations were performed for each rate
and the firing of the spikes follows a Poisson process.

increased. For the AND gates, the accuracy remained above
95%, which represent a difference of at least 9% concerning
OR gates where the highest performance is approximately
86%. The highest standard deviation for an AND gate is still
over 50 times smaller than the highest value for an OR gate,
as aforementioned, this may be due to their different gating
behaviours.

The prediction model was analyzed in relation to ∆IN and
its performance is presented for two gates AND1 (Fig. 10(a))
and OR2 (Fig. 10(b)). These accuracy values were calculated
with a five-millisecond time slot for the discretization analysis
of the output cells. The other performances were omitted to
avoid redundancy but MSE values are presented in Fig. 11 for
all of the eight built gates. The results presented in Fig. 10
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Fig. 9. Spiking rate λ, threshold th and mean accuracy Acc for gates (a)
AND1 and (b) OR2.

shows that for the AND gates, the model results in slightly
higher accuracy compared to the OR gate. This difference
between types of gates reveals itself for the other six gates,
four of the OR type and two of the AND type.

In Fig. 11, the sampling frequency was changed to evaluate
how the shift among bits from both inputs affect the results
of our model in comparison with the real firing of the gates.

Figs. 11(a)-11(c) shows the MSE for AND gates with ∆IN
equal to 1, 3, and 5 ms respectively. On the other hand,
Figs. 11(d)-11(f) show results for the same analysis but OR
gates. In both scenarios, the best MSE was for a time slot
with a length of 1 ms, even though an action potential takes
a longer period than the firing as well as the duration to pass
the absolute refractory period. For all gate models, the MSE
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Fig. 10. Real and predicted mean and standard deviation of the accuracy
for an (a) AND gate type 1 and (b) OR gate type 2 in relation to the ISI.
Predicted results obtained from the implementation of the model proposed in
Section III-B1.

is quite low showing the robustness of developing gates from
the various types of neurons. The changes in the curves can
be explained as a result of the influence of different types of
gates, the variety of morphological types of cells that compose
a gate and to the sampling frequency of spike trains during
numerical analysis.

B. Epilepsy Case Study

When simulating a network of cells susceptible to epileptic
seizures, the analysis was performed in both cases (with and
without logic gates within the network). Only one type of
AND gate was used in random positions within the network
(as illustrated in Fig. 7) that is composed of L23-MC, L23-
NBC and L1-HAC cells. The placement of the AND gates
was chosen at random and we start placing the gates inside
the network at regions with high connections to other cells.

Fig. 12 shows the effect of increasing or decreasing the
intensity of an ionic current while the other is kept constant
with their initial value. This specific simulation based on
the model presented in Section IV was performed with a

single Hodgkin-Huxley compartment during 400 ms while an
external current (10 µA/cm2) is injected into the compartment
in between 100 and 300 ms. The goal of an external stimulus
is to evaluate whether there was any spontaneous spike evoked
during the simulation. As we can observe, the dynamics
between the K and Na influences the spiking rate of the
neurons. Based on this, we can replicate the different seizure-
like events that are described in Equation (29) with the
appropriate ion values.

Figure 13(b) shows how placing a higher number of gates
inside the network may help filter out high frequencies of
firing by decreasing the average firing rate of the network.
This effect is visually shown in Fig. 13(a), where during the
seizure, which is possible to generate by manipulating IK and
INa (Fig. 12), the entire network resulted in lower levels of
activity with 16 gates in comparison with the network that did
not contain any gates.

VII. CONCLUSION

Even though around 50 million people worldwide suffer
from Epilepsy, it is estimated that 10% of the world population
will have a seizure during their lifetime without even being an
epileptic person. In this paper, the performance of neuronal
logic gates was presented as isolated units and their positive
effect by smoothing out the high-frequency firing activity of
several brain cells that occur during seizures. This approach
requires that the cells involved in the gating process should be
synthetically engineered and strategically positioned depend-
ing on the network connectivity to improve results.

Part of this work included a proposed model based on queue
theory concepts that can predict how accurate a specific gating
unit can be based on the input and threshold of the output
cell. The model showed, in the worst scenario, for OR gates,
an MSE of 0.025 while for AND gates this value is of 0.006.
The results also show that the sampling frequency of the spike
train plays a role in the accuracy of the gates and the quality
of the model.

Although this paper only concentrated on the treatment of
seizures in the brain, logic gates can also be applied for the
encoding of information and have the potential to use synthetic
biology to create medical bio nano-machines to improve the
quality of life of people with neurodegenerative diseases and
enhanced information processing inside the brain.
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ABSTRACT2

High-frequency firing activity can be induced either naturally in a healthy brain as a result of the3
processing of sensory stimuli or as an uncontrolled synchronous activity characterizing epileptic4
seizures. As part of this work, we investigate how logic circuits that are engineered in neurons can5
be used to design spike filters, attenuating high-frequency activity in a neuronal network that can6
be used to minimize the effects of neurodegenerative disorders such as epilepsy. We propose a7
reconfigurable filter design built from small neuronal networks that behave as digital logic circuits.8
We developed a mathematical framework to obtain a transfer function derived from a linearization9
process of the Hodgkin-Huxley model. Our results suggest that individual gates working as the10
output of the logic circuits can be used as a reconfigurable filtering technique. Also, as part of11
the analysis, the analytical model showed similar levels of attenuation in the frequency domain12
when compared to computational simulations by fine-tuning the synaptic weight. The proposed13
approach can potentially lead to precise and tunable treatments for neurological conditions that14
are inspired by communication theory.15

Keywords: neuron, hodgkin-huxley, linear model, transfer function, systems theory, epilepsy, filter.16

1 INTRODUCTION

Seizure dynamics with either spontaneous and recurrent profiles can occur even in healthy patients during17
the processing of sensory stimuli or it could manifest itself as an uncontrolled synchronous neural activity18
in large areas of the brain (Jirsa et al., 2014). Any disruption to the mechanisms that inhibit action potential19
initiation or the stimulation of processes that facilitate membrane excitation, can prompt seizures. Tackling20
this disease efficiently is an existing clinical issue where new approaches are constantly being investigated21
in order to provide precise and reliable strategies in inhibiting or disrupting seizure-triggering populations22
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of neurons. For example, controlling neuron firing threshold can most likely prevent seizure activity, which23
can often be achieved at a single neuron level (Scharfman, 2007).24

The development of techniques for the treatment of this type of neurodegenerative disorder is challenging25
not only due to the complexity of the brain function and structure but also as a result of the invasiveness and26
discomfort caused by today’s most common neurostimulation or surgery approaches (Rolston et al., 2012).27
However, due to the lack of success in non-invasive approaches, the immediate future epilepsy treatment28
will still see invasive methods. This approach must achieve population-level control with state-of-the-art29
technology in not only neuroengineering but must also integrate other disciplines. Recent advancements in30
nanotechnology, for instance, have been enabling the development of novel devices at the nano-scale that31
are capable of improving bio-compatibility. Nanotechnology-based treatment also includes advantages in32
the treatment precision, patient comfort as well as longer treatment lifetime. However, there still remain33
numerous challenges in the use of nanotechnology. For example, the passage of chemicals through the34
blood-brain barrier (BBB) is among the many challenges that disrupt the efficiency of nanoparticles-35
mediated drug delivery functioning. Challenges still remain as to how nanoparticles that pass through36
the BBB will diffuse towards specific neural populations. However, if the drug-loaded nanoparticles can37
be delivered at sufficient concentrations and accurately to a specific location, this can influence neural38
activities (Bennewitz and Saltzman, 2009; Veletić et al., 2019). As an example, drug delivery targets39
specific neurodegeneration promoting factors (Feng et al., 2019) by performing a drug-induced control over40
intracellular, extracellular and synaptic properties that regulate spiking activity (Blier and De Montigny,41
1987).42

Previous studies on the firing response of neurons have investigated the filtering capabilities either due to43
realistic synaptic dynamics (Brunel et al., 2001; Moreno-Bote and Parga, 2004) or by naturally manipulating44
the resting potential of voltage-dependent active conductances of a neuron enhancing its temporal filtering45
properties (Fortune and Rose, 1997; Motanis et al., 2018). On the other hand, existing analyses do not46
account for the many molecular control mechanisms that may influence the synaptic activity, e.g. drug. In47
the case of seizures, the understanding of the drug-induced firing response may allow further analysis on48
the impact of high-frequency firing on the neural tissue as well as how to desynchronize or slow it down.49
Frequency-domain analysis has been performed on top of linear models of the Hodgkin-Huxley (HH)50
formalism to investigate not only the transmission of information through the use of subthreshold electrical51
stimulation (Khodaei and Pierobon, 2016) but also the influence of axonal demyelination on the propagation52
of action potentials (Chaubey and Goodwin, 2016). Although Hodgkin-Huxley is not the only neuron model53
available in the literature, it is one of the most plausible models for computational neuroscience (Long and54
Fang, 2010). Other proposed models are, for example, integrate-and-fire, Izhikevich and Fitzhugh-Nagumo55
models (Mishra and Majhi, 2019).56

The manipulation of cellular activity, such as neuronal spiking activity, using molecules complexes to57
mimic logic gates and transistors has also been proposed in the literature. One example is the work of Vogels58
and Abbott (2005), in which the propagation of neuronal signals in networks of integrate-and-fire models59
of neurons was investigated and they found that different types of logic gates may arise within the network60
by either strengthening or weakening specific synapses. Goldental et al. (2014) used identical neurons61
to propose dynamic logic gates that work based on their historical activities, interconnection profiles, as62
well as the frequency of stimulation at their input terminals. In our previous works (Adonias et al., 2019;63
Adonias et al., 2020), we developed several logic gates arranged in groups of three heterogeneous models of64
neurons, with two working as inputs and one as the output, and performed a queueing-theoretical analysis65
aiming at the study of such a complex network as a single element behaving as the collective of those66
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cells. Irrespective of the tremendous efforts from the scientific community, these works do not provide a67
framework of reconfigurable circuits that could pave the way for more sophisticated approaches for neuron68
control. Further investigation of novel neuronal electronic components constructions is needed to develop69
bio-compatible and reliable solutions that can address defective neuronal networks. While the scientific70
community has been witnessing remarkable progress in the manipulation and engineering of the behavior71
of mammalian cells (Lienert et al., 2014), the existing models do not yield analytical expressions that could72
be used to model drug-induced filtering capabilities of a neuron and, in particular, incorporating computing73
paradigms. The main focus of this work is to lay the ground-work of analytical models for digital filters74
that are designed and engineered into neurons, potentially leading to the development of novel epilepsy75
treatments.76

W1(s)

W2(s)

W3(s)Σ

Figure 1. Engineered neuronal digital logic circuit, where each gate is composed of three neurons and
each block Wi(s) represents one neuron as a transfer function to enable communication metric analysis .

In this work, we propose a mathematical framework aiming at the interpretation of the filtering capabilities77
in small populations of neurons that are engineered into a logic circuit (Figure 1). The circuit aims to78
reduce the firing rates from its inputs by performing the binary logic as well as integrating reconfigurability,79
where the different logic circuit arrangements, as well as logic gate types, can be tuned to change the80
filtering properties. To achieve that in our mathematical framework, we modify parameters on the logic81
circuit transfer function, derived from the linear interpretation of the Hodgkin-Huxley neuronal model.82
These parameters are related to neuronal and synaptic properties of a neuro-spike communication, such83
as conductances and weight, and can potentially be achieved through the sustained administration of a84
specific drug. Our mathematical framework is, from an application point-of-view, a design platform for85
neuroscientists in creating filtering solutions for smoothing out the effects of neurological diseases that86
require the minimization of firing activity. The framework models the effects of drug-induced molecular87
changes in models of neurons aiming to control the neuronal activity of a synthetic engineered cell, however,88
the fabrication and specifications of such a drug are out of the scope of this paper. The contributions of this89
paper are as follows:90

• Neuronal logic circuits are built using computational models of neurons and this arrangement is91
expected to be capable of acting as digital filters, converging four inputs into one output with a shift in92
attenuation driven by modifications to the synaptic weight.93

• A mathematical framework is proposed paving the way for the design of neuronal digital filters to94
help suppress the destructive effects of neurodegenerative diseases. This framework should enable95
the relationship between biophysical models and drug design, facilitating scientists control over the96
behavior of the filters.97

• Analysis of the performance of the neuronal filters in terms of accuracy and of signal power98
attenuated by the circuit. This analysis gives an insight into how parameters such as weight or99
frequency at the input would affect the performance of such filters.100
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The remainder of this paper is as follows, Section 2.1 briefly describes how neurons differ between each101
other and how they communicate with one another. In Section 2.2, we explain how neurons can function102
as non-linear electronic circuits based on the seminal work of Hodgkin and Huxley (1952) and we also103
describe the process of linearization aiming to derive a transfer function of the filter model. The filter104
design is explained in Section 2.3 which also covers how neurons are represented as compartments and105
connected to form logic gates and, consequently, to form logic circuits. In Section 3, we present the results106
that are discussed in Section 4 and, finally, the conclusions are presented in Section 5.107

2 MATERIAL AND METHODS

2.1 Neuronal Communication108

To be able to synthetically implement complex functions inside the brain, we must control how the109
neurons exchange information using the propagation of action potentials inside a network of neurons. The110
number of excitatory and inhibitory connections between neurons determines the spatio-temporal dynamics111
of the action potentials propagation (Zhou et al., 2018). Efficient coding and modulation of neuronal112
information have been used to implement bio-computational approaches in our previous work (Adonias113
et al., 2020). Bio-computing can be created from neuronal networks that are engineered to function as logic114
circuits through controlling the neuro-spike communication and curbing the signal propagation dynamics115
between the neurons.116

We aim to investigate the neuronal and synaptic properties in constructing logic circuits that perform the117
filtering of spikes in small populations from the somatosensory cortex. The cortex is responsible for most118
of the signal processing performed by the brain and comprises a rich variety of morpho-electrical types of119
neuronal and non-neuronal cells. We will take into account these characteristics in the construction of our120
mathematical framework that is used to design the circuits.121

2.1.1 Properties of a Neuron122

Neurons are divided into three main parts: dendrites, soma and axon. Dendrites receive stimuli from other123
cells and the way these dendritic trees are projected onto neighboring neurons in a network helps to classify124
neuron morphological types. The axon passes stimuli forward to cells connected down the network through125
its axon terminals and the soma is the main body of the neuron. Each neuron’s response to a stimulus will126
dictate the electrophysiological neuron type. The soma is where most proteins and genes are produced and127
where stimuli are generated and fired down the axon.128

Besides the way dendrites are projected, the proteins and genes that neurons express and their129
morphological and electrophysiological characteristics are important for the classification of different130
types of neurons. One of the most comprehensive works on neuronal modelling, by Markram et al. (2015),131
classifies the neurons from the rat’s somatosensory cortex based on their morpho-electrical properties132
(morphological and electrical characteristics) as well as the cortical layer they belong (columnar and133
laminar organization).134

2.1.1.1 Morpho-electrical Characteristics135

Even though all neurons used in this work can assume different morphological structure, it is exactly by136
analyzing their axonal and dendritic ramification that we can have a good enough categorization of their137
respective morphological types. Regardless of their types, neurons in the cortical layer are considered of138
small sizes (8 - 16µm). Furthermore, inhibitory neurons can be better identified by their axonal features139
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while excitatory neurons can be more easily classified based on their dendritic features (Markram et al.,140
2015). Each morphological type (m-type) can fire different spiking patterns and this may affect the gating141
capabilities of neurons due to the fluctuations on precise spike timing. Markram et al. (2015) categorized142
11 different electrical types (e-types) of neurons, hence, 11 different ways of firing a spike train generated143
in response to an injected step current.144

2.1.1.2 Cortical Organization145

The cerebral cortex comprises six distinguished horizontal layers of neurons, with each layer having146
particular characteristics such as cell density and type, layer size and thickness. This horizontal147
configuration is also known as a “laminar” organization, where the layers are identified as (1) Molecular148
layer, which contains only a few scattered neurons and consists mostly of glial cells and axonal and149
dendritic connections of neurons from other layers; (2) External granular layer, containing several stellate150
and small pyramidal neurons; (3) Pyramidal layer, contains non-pyramidal and pyramidal cells of small151
and medium sizes; (4) Inner granular layer, predominantly populated with stellate and pyramidal cells,152
this is the target of thalamic inputs; (5) Ganglionic layer, containing large pyramidal cells that establish153
connections with subcortical structures; and (6) Multiform layer, populated by just a few large pyramidal154
neurons and a good amount of multiform neurons, which sends information back to the thalamus. All155
layers may contain inter-neurons bridging two different brain regions.156

The neurons are not just stacked one on top of another suggesting a horizontal organization, indeed157
vertical connections are also found in between the neurons from either the same or different layers. This158
allows another type of classification known as mini-columns (also called, micro-columns) with a diameter159
of 30 - 50 µm and when activated by peripheral stimuli, they are seen as macro-columns, with a diameter160
of 0.4 - 0.5 mm (Peters, 2010). This will create network topologies with intrinsic characteristics, e.g.161
connection probabilities between neurons, that influence the signal propagation to converge into either a162
specific pattern or flow.163

2.1.2 Neuron-to-neuron Communication164

The communication between a pair of neurons is done through the diffusion of neurotransmitters in165
the synaptic cleft; this process is triggered by an electrical impulse reaching the axon terminals of the166
transmitting cell characterizing an electrochemical signalling process known as the synapse. Action167
potentials propagate down the axon of the pre-synaptic cell, which is the sender cell, and when reaching168
the axon terminals also known as pre-synaptic terminals, it triggers the release of vesicles containing169
neurotransmitters into the synaptic cleft, which is the gap between a pre- and a post-synaptic terminal,170
as illustrated in Figure 2. Those neurotransmitters will probabilistically bind to neuro-receptors located171
at the post-synaptic terminals, i.e. dendrites (Balevi and Akan, 2013), triggering the exchange of ions172
through the membrane that can either excite or inhibit the cell, depending on the type of neurotransmitters173
that were received. In our work, we focus on the synaptic weight between the pre- and post-synaptic174
terminals. The synaptic weight is a measure of how much influence the pre-synaptic stimuli have on175
the post-synaptic cell and it is known to have its value best approximated to the time integral of the176
synaptic conductance (Gardner, 1989). Furthermore, the value of synaptic conductance in the post-synaptic177
terminal is driven by the number of neurotransmitters bound to neuroreceptors (Guillamon et al., 2006).178
We illustrate the synaptic weight, in Figure 2, as red neurotransmitters which should have their release179
from the pre-synaptic terminals induced by the administration of a specific drug.180

In an excitatory synapse, the membrane potential of the post-synaptic cell, which rests at approximately181
−65 mV, will start depolarizing itself until it reaches a threshold, th, for action potential initiation. On the182
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Figure 2. Schematic of a synapse; action potentials traveling down the axon trigger the release of
neurotransmitters into the cleft between pre- and post-synaptic terminals, traveling towards neuroreceptors
on the other end leading to changes on membrane conductance that can either excite or inhibit the
post-synaptic neuron.

other hand, if the synapse is inhibitory, the membrane should get even more polarized making it nearly183
impossible for the cell to fire a spike and not allowing the propagation of any signal down the network184
from the inhibited cell. After reaching th, the membrane potential should increase towards a maximum185
peak of depolarization, and then the cell will start the process of repolarization towards its resting potential.186
For a brief moment, the potential inside the cell will cross the level of potential when at rest making187
the membrane hyperpolarized, which is a period known as the refractory period and it can be further188
subdivided as absolute and relative. The absolute refractory period (ARP) lasts around 1 - 2 ms during189
which the neuron is unable to fire again regardless of the strength of the stimuli; then, it is followed by190
the relative refractory period (RRP) during which a response in the potential of the cell may be evoked191
depending on the strength of the stimuli (Mishra and Majhi, 2019).192
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2.2 Electronic Interpretation of a Neuron Model193

The main structures of a neuron, previously mentioned in Section 2.1.1, can assume different shapes and194
spatial structures that play an important role in determining its input and output relationship. By sectioning195
the neuron into several compartment models, we are able to account for the influence that individual196
compartments have on the communication process of the neuron. Even though we consider the same197
value of resting potential for all compartments of the cell, there is some discussion on whether different198
compartments have different potentials when at rest (Hu and Bean, 2018).199

We aim to develop a transfer function for the neuron-spike response, or output (V (s)), to a particular200
spike input (I(s)). Using a transfer function for each neuron which is represented as a single compartment,201
we are able to efficiently associate the configuration of the filters with the structure of the neural network as202
well as the individual characteristics of each neuron. On top of that, we also are able to focus on frequency203
domain for an effective spike firing filtering. We rely on the electronic interpretation of the Hodgkin-Huxley204
model of neuron action potentials, which is made based on the neuronal cable theory assumptions on the205
static ionic channels conductance. In this section, we provide the details of the development of the transfer206
function, which is built on the linearization process of the Hodgkin-Huxley neuron model.207

2.2.1 Hodgkin-Huxley Formalism208

As aforementioned in Section 1, neurons can perform spike filtering tasks either by manipulating ionic209
conductances, such as sodium and potassium conductances, from within the cell (Fortune and Rose, 1997)210
or by working on the extracellular environment where the synapse occurs (Brunel et al., 2001; Moreno-Bote211
and Parga, 2004). Furthermore, filtering capabilities may vary according to the non-linearities of the212
neuron’s activity and action potential propagation. In order to design an efficient filtering process, we will213
need to eliminate the non-linearities so we can directly link neurons properties to the filtering behavior214
and adjust these properties according to a desired filtering performance level. We consider the Hodgkin215
and Huxley non-linear model (Pospischil et al., 2008) as our basic model since it perfectly describes the216
influence of ionic conductance and synaptic conductance in the propagation of the action potentials. We217
assume that parts of the neuron will constitute a compartment, which results in the electric circuit in Fig. 3A218
when applying the conventional neural cable theory.219

Iext

gNa gK gl

C

ENa EK El

extracellular

membrane
(lipid bilayer)

intracellular

Na+K+K+

Na+

K+Na+

K+K+

ionic
gates

A B

Figure 3. Hodgkin-Huxley (HH) model: (A) Electronic circuit representation and (B) Equivalent biological
HH compartment; the lipid bilayer is modeled as C, the conductances g represent how open or close the
ionic gates are and the gradient of ions between the intra- and extra-cellular space define the reversal
potentials E.
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Figure 3 depicts C as the membrane capacitance, each voltage-gated ionic channel represented by its220
respective conductances gNa and gK and the leak channel by the linear conductance gl. The membrane221
capacitance is proportional to the surface area of the neuron and, along with its resistance, dictates how fast222
its potential responds to the ionic flow. The ratio between intra- and extra-cellular ions define the reversal223
potentials ENa,K, l establishing a gradient that will drive the flow of ions (Barreto and Cressman, 2011).224

When an external stimulus, Iext, is presented, it triggers either the activation or inactivation of the ionic225
channels that allow the exchange of ions that result in depolarization (or hyperpolarization when inhibitory)226
of the membrane of the cell. These dynamics are modeled as227

C
dV
dt

= −Il − INa − IK + Iext, (1)

where V is the membrane potential and Ix are the ionic currents where x represents either a specific ion228
(Na, K) or the leak channel (l). Those currents are described as229

Il = gl(V − El), (2)

INa = gNam
3h(V − ENa), (3)

IK = gKn
4(V − EK), (4)

where m and h are the activation and inactivation variables of the sodium channel, respectively, and n is the230
activation variable of the potassium channel, following the conventional approach described by Hodgkin231
and Huxley (1952) and stated as232

dm
dt

= αm(V )(1−m)− βm(V )m, (5)

dh
dt

= αh(V )(1− h)− βh(V )h, (6)

dn
dt

= αn(V )(1− n)− βn(V )n, (7)

in which the values of the rate constants αi and βi for the i-th ionic channel can be defined as233

αm =
0.1(V + 40)

1 + e−(V+40)/10
, (8)

βm = 4e−(V+65)/20, (9)

αh = 0.07e−(V+65)/20, (10)
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βh =
1

1 + e−(V+35)/10
, (11)

αn =
0.01(V + 55)

1− e−(V+55)/10
, (12)

βn = 0.125e−(V+65)/80. (13)

The membrane capacitance is proportional to the size of the cell, and on the other hand, the bigger234
the cell diameter, the lower the spontaneous firing rate (Sengupta et al., 2013). Furthermore, each ionic235
channel can be studied as containing one or more physical gates which can assume either a permissive or236
a non-permissive state when controlling the flow of ions. The channel is open when all gates are in the237
permissive state, and it is closed when all of them are in the non-permissive state (Baxter and Byrne, 2014).238

2.2.2 Hodgkin-Huxley Linear Model239

In order to derive a transfer function for the Hodgkin-Huxley model, we must consider each neuron as240
a system that is linear and time-invariant (LTI). If the system is non-linear, then a linearization process241
should be done before any frequency analysis is performed. For a more detailed analysis on the procedures242
for linearization of the Hodgkin-Huxley model, the reader is referred to (Koch, 2004; Mauro et al., 1970;243
Sabah and Leibovic, 1969; Chandler et al., 1962).244

The linearization process requires that we reconsider the electronic components in each neuron245
compartment to adequately eliminate trivial relationships. Membranes with specific types of voltage-246
and time-dependent conductances can behave as if they had inductances even though neurobiology247
does not possess any coil-like elements. This modification will transform the behavior of non-linear248
components towards linearization, resulting in a proportional relationship between the voltage and current249
changes (Koch, 2004).250

Every linearization process is performed for small variations around a fixed point, hereafter denominated251
by δ, and in the case of the Hodgkin-Huxley model, this fixed point should be the steady-state (resting252
state) of the system. Because the sodium activation generates a current component that flows in an opposite253
direction compared to that of a passive current, the branch concerning the sodium activation should254
have components with negative values while the branches regarding potassium activation and sodium255
inactivation should have components with positive values (Sabah and Leibovic, 1969). The linear version256
of the circuit of Figure 3A is illustrated in Figure 4, where C is the membrane capacitance, gn, gm and gh257
are the conductances of the inductive branches connected in series with their respective inductances Ln,258
Lm and Lh derived from the linearization process and GT = GL +GK +GNa is the total pure membrane259
conductance.260

Let us consider the membrane potential deviation, δV , around some fixed potential. Thus, we can express261
the response of the circuit to small-signal inputs as262

C
dδV

dt
= Iext − δIl − δIK − δINa, (14)

where δIl,Na,K are current variations at any given steady-state and can be defined as263
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C GT

gn

Ln

gm

Lm

gh

Lh

Iext

Figure 4. Hodgkin-Huxley linear circuit model representation.

δIl = glδV, (15)

δIK = GKδV + 4gKn
3
∞(V − EK)δn, (16)

δINa = GNaδV + 3gNam
2
∞h∞(V − ENa)δm+ gNam

3
∞(V − ENa)δh, (17)

where GK,Na are pure conductances of potassium and sodium and GL the pure leak conductance expressed264
as265

GL = ḡl, (18)

GK = ḡKn
4
∞, (19)

GNa = ḡNam
3
∞h∞, (20)

where ḡK,Na are the maximum attainable conductances, and δn, δm and δh are small variations around the266
steady-state of the activation and inactivation variables n, m and h which are written as267

dδn

dt
=
dαn
dV

δV − (αn + βn)δV − n∞
(
dαn
dt
− dβn

dt

)
δV, (21)

dδm

dt
=
dαm
dV

δV − (αm + βm)δV −m∞
(
dαm
dt
− dβm

dt

)
δV, (22)

dδh

dt
=
dαh
dV

δV − (αh + βh)δV − h∞
(
dαh
dt
− dβh

dt

)
δV, (23)
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as a function of the derivative of the rate constants αn,m,h and βn,m,h, and n∞, m∞ and h∞ are the268
steady-state values of m, n and h defined as269

n∞ =
αn

αn + βn
, (24)

m∞ =
αm

αm + βm
, (25)

h∞ =
αh

αh + βh
, (26)

and the conductances, gn,m,h, and inductances, Ln,m,h, of the inductive branches are defined as270

gn =

4ḡKn
3
∞(V − EK)

[
dαn
dV

∣∣∣∣
r

− n∞
d(αn + βn)

dV

∣∣∣∣
r

]

αn + βn
, (27)

Ln =
1

gn(αn + βn)
, (28)

gm =

3ḡNam
2
∞h∞(V − ENa)

[
dαm
dV

∣∣∣∣
r

−m∞
d(αm + βm)

dV

∣∣∣∣
r

]

αm + βm
, (29)

Lm =
1

gm(αm + βm)
, (30)

gh =

ḡNam
3
∞(V − ENa)

[
dαh
dV

∣∣∣∣
r

− h∞
d(αh + βh)

dV

∣∣∣∣
r

]

αh + βh
, (31)

Lh =
1

gh(αh + βh)
. (32)

Each channel has a probability of being open which represents the fraction of gates in that channel that271
are in the permissive state (Gerstner et al., 2014). The gating variables are described by the coupling of272
the conductances gn,m,h and their respective inductances Ln,m,h which are functions of the rate constants273
representing the transition from permissive to non-permissive state, α(V ), and vice-versa, β(V ) which274
should take a short period of time, τ = [α(V ) + β(V )]−1, to eventually reach a steady-state value, α∞ and275
β∞ (Koslow and Subramaniam, 2005).276

Borrowing concepts from systems theory such as frequency analysis of LTI systems, as a standard277
procedure for the analysis of linear differential equations as simpler algebraic expressions, see (Nise, 2015),278
and the linearization of non-linear systems for the reason previously mentioned at the beginning of this279
section, we derived a transfer function in the Laplace domain for the linear system from Figure 4. The280
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relationship between the different elements of the circuit and their respective impedance and admittance281
values from the Laplace transforms are depicted in Table 1.282

Table 1. Impedance relationships for capacitors, resistors and inductors.

Component Impedance Admittance
Capacitor

1

Cs
Cs

Resistor
R G =

1

R

Inductor Ls
1

Ls

Therefore, the relationship between the output and the input of the system in the frequency domain is283
expressed as284

V (s)

I(s)
=

s3LnLmLh
{LnLmLh[s4C + s3(GT + gn + gm + gh)] + s2(LmLh + LnLh + LmLh)} (33)

where s = σ + jω is a complex variable; j =
√
−1 and ω = 2πf , where f is the frequency in Hertz. Let285

us rewrite Eq. (33) as286

W (s) = C−1
s

s2 + sC−1(GT + gn + gm + gh) + C−1(L−1m + L−1n + L−1h )
. (34)

Now, denoting γ = GT + gn + gm + gh and λ−1 = L−1n + L−1m + L−1h and performing a few algebraic287
manipulations, we end up with the following transfer function for the filter model288

W (s) = γ−1
C−1γs

s2 + C−1γs+ λ−1C−1
. (35)

For frequency response analysis, we observe the behaviour of W (jω), i.e. substitute s = jω. For ω → 0,289
W (jω) behaves like ω; for ω → ∞ it behaves like 1

ω+1 , i.e. in both cases it tends to zero, and hence290
demonstrates the behaviour of a second-order band-pass filter (BPF). It corresponds to the canonical form291

K(ω0/Q)s

s2+(ω0/Q)s+ω2
0

where K = γ−1 is the gain, Q = γ−1
√
Cλ−1 is the selectivity and ω0 =

√
λ−1C−1 is292

the peak frequency of the filter. This agrees with findings from previous literature on the matter (Plesser293
and Geisel, 1999) that concluded the periodicity of a stimulus is optimally encoded by a neuron only in a294
specific spectral window.295

2.3 Transfer Function Filter Design296

Given the transfer function for a neural compartment in the previous section, we now progress towards297
a transfer function for the spike filter. The filter is comprised of neurons that are particularly chosen to298
have a network that will behave as a digital gate and a small population that will behave as a circuit that299
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implements the filter. Our aim is to capture the relationship between compartments as well as neuron300
connections so we can build a transfer function for the filter while considering neuron connection variables301
(synaptic conductance and synaptic weight) that allow easy reconfiguration of the filtering process. The302
linearization process combined with the analysis of the neuron communications is the driver of the filtering303
process, which also allows the derivation of a filter transfer function which is detailed below.304

2.3.1 Biological Logic Gates and Circuits305

Synthetic biology is the technology that allows the control of the neurons’ internal process in order to306
construct non-natural activity and functioning of neurons, e.g. logic gates (Larouche and Aguilar, 2018).307
Synthetic logic operations inspire scientists to address the challenges posed by novel synthetic biomedical308
systems, such as biocompatibility and long-term use.309

Circuit BCircuit A Circuit CA

B

A1
A2

Figure 5. (A) Schematic of circuits A, B and C and (B) The connection of AND gates in cascade to circuit
A. A1 refers to the arrangement described by a single AND gate connected to the output of the circuit A
and A2 refers to another AND gate connected to the output of A1 arrangement, i.e. two AND gates in
cascade with circuit A. Analogous nomenclature is employed for both circuits B, as in B1/B2 and C, as in
C1/C2.

Figure 5A shows the three types of the circuit we have built and analyzed in this work. From circuits A to310
C, the number of OR gates is decreased; when compared to AND gates, OR gates are quite permissive. In311
our previous study312

Given that several factors such as connection probability, type of cell, and different numbers of313
compartments (as discussed in Section 2.3.2) among different types of neurons may influence its gating314
capabilities. This variation on the quantity of compartments could also lead to variations on periods for315
the action potential to reach the post-synaptic terminals and start the synapse process. Furthermore, cells316
with bigger sizes of soma may take more time and amount of stimuli to reach threshold for action potential317
initiation (Sengupta et al., 2013), thus, also affecting the way a neuronal logic gate would work regarding318
a specific morphological neuronal type. For that reason, it is safe to keep two cells fixed as inputs (as319
illustrated in Figure 1) and then deploy an arrangement with which its performance has been previously320
assessed, allowing us to be fairly certain about how the synthetic gate or circuit should behave. Each neuron321
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is represented by a block, Wi(s) for the i-th neuron, and its representation in the frequency domain is322
proposed in Equation (35) and further detailed in Subsection 2.3.2.323

2.3.2 Compartmental Modelling324

Neurons are very complex structures with numerous ramifications and several factors that contribute325
to their highly non-linear dynamism. Aiming to make the comprehension of such a complex electrical326
behavior easier, one employs a widely used technique called “compartmental modelling”. Since different327
neurons have different morphologies, the mechanism of determining the number of compartments will328
be based on estimating the length of a specific neuronal structure. For instance, a varying length of axon,329
which will reflect in different quantities of compartment in series, where we will have a fixed size for330
each segment of the axon representing one compartment. This is a very natural and elegant way to model331
dynamic systems as multiple interconnected compartments where each compartment is described by its332
own set of equations, carrying the influence of one compartment to the next reproducing the behavior of333
the whole neuron.334

Observing the neuron as a set of compartments described by transfer functions equivalent to that of (35),335
the neuronal morphology of a pyramidal cell, as illustrated in Figure 6A, (or any cell for that matter) can336
be modeled as an electrical circuit as shown in the topology of Figure 6B; the dendritic ramifications are337
modeled as a combination of serial and parallel connections terminanting in the soma which is connected to338
the axon modeled as a series of compartments; its interpretation in terms of filtering is given in Figure 6C.339
The effect of a serial connection of two compartments is one of set-intersection when observed in the340
frequency domain: two bandpass filters in series pass only the frequencies that exist in both of their341
passbands. On the other hand, a parallel connection has a set-union effect, a parallel connection of filters342
will pass all the frequencies in both their passbands. As such, a large network (tree) of such compartments343
with similar bands combined in a cell, and cells combined in a group of cells will exhibit asymptotic344
bandpass behavior as well.345

A

BC

A∩B

(A∩B)∪CA B C

Figure 6. Compartmental neuron representation: (A) Natural topology of a pyramidal cell, (B) Electronic
circuit compartments and (C) Effects of serial and parallel connections between compartments.

Every single compartment, each represented by one transfer function, is grouped in trees of three cells346
(Figure 1) forming a logic gate; the three gates are connected into a tree of their own, as illustrated in347
Figure 5A, forming a logic circuit. All of the cells are represented with the same form of the transfer348
function,349
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Wi(s) = ζiγ
−1
i

C−1i γis

s2 + C−1i γis+ λ−1i C−1i
, i = 1, . . . , 9 (36)

with symbols defined previously, and a new parameter ζi describing the synaptic weight for the ith cell; ζi350
acts as a tunable gain for the neurons.351

Using the parameters from (Mauro et al., 1970) aiming to keep them within the physically sensible orders352
of magnitude, we obtain the reference values of γ̄ = 0.0024, λ̄ = 119, C̄ = 1 and ζ̄ = 1, and the values353
for 9 cells were generated multiplying these reference values by a uniformly distributed random variable354
in the range (0, 1). This kind of distribution is widely used to describe experiments where an arbitrary355
result should lie between certain boundaries, and in our case boundaries are defined by reasonable orders356
of magnitude around values made available by previous studies; keeping exactly the same parameters for357
all cells in the cascade is not realistic. The total transfer function of this system is358

W = ((W1 +W2)W3W7 + (W4 +W5)W6W8)W9, (37)

and its frequency response (Bode plot) for the relevant range of frequencies in our applications (Wilson359
et al., 2004) is shown in Figure 7B.360
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Figure 7. Bode plots: (A) Single second-order bandpass filter approximation and (B) Filter structure from
Eq. (37)

Let us now observe three cases concerning the choice of ζi values. In the first case, we keep all of them361
at unity and consider it our base case for this part of the analysis (and to keep it aligned with the rest of362
the paper, we call it Circuit B). In the second case, we double the values of ζ3 and ζ6, which corresponds363
to the manipulation of the output cell for the two input gates in Circuit A. In our linear model, this is364
equivalent to doubling ζ9 and leaving everything else intact. Finally, in the third case, we manipulate the365
output cell of the last gate by halving its synaptic conductance (Circuit C). This effectively means that the366
three cases are ζ9B = 1, ζ9A = 2 and ζ9C = 1/2, respectively. Since the tunable gain ζ9 of the gate W9, is367
the tunable gain of the whole system W according to (37), its change would offset the frequency response368
along the ordinate axis, i.e. lower gains (lower conductance) would suppress the unwanted frequencies in a369
better way, while higher gains would do the opposite. This is demonstrated in Figure 7A. The process of370
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the analysis is summarized in Algorithm 1 and a summary with all elements from both the original and371
linearized versions of the Hodgkin-Huxley as well as the transfer function model is presented in Table 2.372

1 Initialize:
2 Γ = {γ1, . . . , γ9} ∈ (0, γ̄)
3 Λ = {λ1, . . . , λ9} ∈ (0, λ̄)
4 C = {C1, . . . , C9} ∈ (0, C̄)
5 Z = {ζ1, . . . , ζ9} ∈ (0, ζ̄)
6 for 1 ≤ i ≤ 9 do
7 Wi ← ζiγ

−1
i

C−1
i γis

s2+C−1
i γis+λ

−1
i C−1

i

8 end
9 WB ← ((W1 +W2)W3W7 + (W4 +W5)W6W8)W9

10 WA ← 2WB
11 WC ← 0.5WB
12 Plot frequency response: WA,WB,WC

Algorithm 1: Linear model filter analysis

Alternatively, as we suggested earlier, a single transfer function of a compartment serves as an373
approximation of the entire system due to the effects of repeated bandpass filtering in Figure 6C. In374
such case, we observe 20 dB/decade slope in the Bode plot shown in Figure 7A (as compared to 80375
dB/decade slope in Figure 7B) and the same offset of 20 · log10 2 ≈ 6 dB in case of halving/doubling the376
synaptic weight. Since the filter is of a band-passing nature, it is only natural that, around the resonant377
frequency, lower and higher frequency amplitudes should be ideally attenuated towards zero. Thus, it is378
worth mentioning that in both cases depicted here, the part of the frequency response with the cusp is at379
very low frequencies, so it is not visible in the relevant part of the spectrum. As such, the filter behaves as a380
low pass filter for all practical considerations.381

3 RESULTS

In this section, we discuss the simulation results concerning the reconfigurable logic gates as well as the382
circuits. For all simulations, intrinsic parameters of the cell were kept at their default values (such as the383
length and diameter of each of their compartments) meaning that nothing concerning their morphological384
properties was changed, the spike trains fed to the input of the circuits followed a Poisson process and385
the threshold for spike detection and data analysis was 0 mV where any potential higher than that in a386
specific time slot would be considered a bit “1”, characterizing the use of a simple On-Off Keying (OOK)387
modulation which was implemented where a spike is considered as a bit ‘1’ and its absence a bit ‘0’ in each388
time slot. The cell models and information on their respective connection probabilities between different389
pair of neurons were obtained from the work of Markram et al. (2015), and then we used NEURON and390
Python for simulation and data analysis (Carnevale and Hines, 2009; Hines et al., 2009). The source-code391
of our simulations is publicly available on a GitHub repository1.392

3.1 Reconfigurable Logic Gates393

In this work, we call “reconfigurable” logic gates, the gates that work by changing the synaptic weight394
between the connections of both input cells with the output cell in a neuronal logic gate structure. Aiming395

1 https://github.com/gladonias/neuronal-filters
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Table 2. Summary of elements described in the proposed model.

Element Description
C Membrane capacitance

gNa, gK , gl Sodium, potassium and leak conductances
ENa, EK , El Sodium, potassium and leak reversal potentials

Iext External stimulus

INa, IK , Il
Ionic current for the sodium, potassium and leak
channels

V Membrane potential
m,h Sodium activation and inactivation variables
n Potassium activation variable

α, β
Rate constants for m, h and n from permissive
to non-permissive state and vice-versa

δ Small variation around the steady-state
GT Total pure conductance

GNa, GK , GL Sodium, potassium and leak pure conductances

ḡNa, ḡK , ḡl
Maximum attainable sodium, potassium and
leak conductances

m∞, h∞, n∞ Steady-state values of m, h and n
gm, gh, gn Conductances of the inductive branches
Lm, Lh, Ln Inductances of the ionic paths

W Transfer function of the filter
K,Q, ω0 Gain, selectivity and peak frequency of the filter

ζ Synaptic weight

to measure individual gate accuracy, the spike trains in the inputs were randomly produced but we control396
their frequency variation, in other words, for each simulation, the frequency at all inputs was the same and397
any change in the frequency was performed for all inputs of the gates meaning that none of the simulations398
account for different frequency values between different inputs in a single simulation. The accuracy is399
a simple but powerful measure for the performance of the gates, with which we intend to analyze the400
effects of the dynamics of the cell on the output of the circuit when comparing this output with the ideal401
response of the circuit derived from its truth-table. The accuracy is calculated according to the following402
equation (Hanisch and Pierobon, 2017):403

A(E[Y ];Y ) =
P1,1 + P0,0∑

Y

∑

E[Y ]

PY,E[Y ]

, (38)

where PY,E[Y ] is the probability of Y given E[Y ] in which Y is the actual output and E[Y ] is the expected404
output and Y &E[Y ] ∈ {0, 1}. PY,E[Y ] resembles the conditional probabilities in a binary symmetric405
channel (BSC). Thus, P0,0 = 1− P1,0, and P0,1 = 1− P1,1. It is possible to calculate P1,1, for instance,406
by counting the number of bits there are for each input-output combination. In other words, considering407
#Bi,j the number of times a bit i was received when bit j was sent knowing that i& j ∈ {0, 1}, then408
P1,1 = #B1,1/(#B1,1 + #B0,1).409

Given the objective of obtaining a behavior similar to an OR gate, the synaptic weight should be set to410
0.06µS, meaning that the pre-synaptic stimuli will drive a higher influence on the depolarization of the411
post-synaptic cell. On the other hand, for an AND behavior, the weight is set to 0.03µS, which reduces the412
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influence of a single spike and look to a response of the post-synaptic neuron only when two spikes arrive413
very close to each other in terms of time. This is conducted so we have acceptable levels of accuracy when414
compared to the expected outputs of the gate.415
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Figure 8. Analysis on reconfigurable logic gates with neurons of types (A) L23-MC, L23-NBC and
L1-DAC and (B) L23-MC, L23-NBC and L1-HAC.

Figures 8 show similar responses when gates originally built to be of a specific kind. This means either416
OR or AND gates can change their configurations that drives their gating capabilities by modifying the417
synaptic weight between the connections of the input cells and the output cell. Although there is quite a418
visible difference between the performance of AND and OR gates, even at high frequencies (150 Hz), the419
accuracy of the reconfigurable logic gates remains above 80%.420

3.2 Neuronal Logic Circuits421

Once the reconfigurable behavior of the gates is assessed, they are connected to other gates to form a422
logic circuit. The performance is measured employing a ratio (frequency response), i.e. the number of423
spikes (bits ‘1’) in the output divided by the nominal input frequency, in Hertz. This ratio is also known as424
the magnitude, or gain when evaluating the data in decibels. Following the approach for individual gates,425
the inputs are random and the frequency is increased uniformly. Since the gates showed similar accuracy426
when increasing the input frequency, we picked the one analyzed in Figure 8A for our circuit analysis with427
a reconfigurable logic gate, modifying only the output gate’s synaptic properties.428

Figures 9A show the results for the circuits in Figure 5A. As expected, Circuit C has a stronger attenuation429
of the signals passing through it, and this is mainly due to the fact it is an arrangement with three AND430
gates and, based on the truth table, an AND gate only responds to stimuli if all its inputs are active at the431
same time. The magnitude in decibels shown in Figure 9B follow a standard presentation of the response432
of digital filters.433

In the non-linear case of the system, the filtering is even better than what the linear model would promise,434
i.e. the suppression of unwanted frequencies is better due to superexponential decay. Let us compare435
Figure 7B and Figure 9B. The linear model suggests that a constant difference of 6 dB is to be expected436
if the synaptic weight of the output cell is halved (or doubled), and a linear, constant amplitude drop. In437
the nonlinear model, we do observe a 20 dB/decade drop and 6 dB difference at relevant frequencies, but438
instead of a linear trend, we observe a convex response, which helps in attenuating high frequencies faster439
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Figure 9. Effects of dynamic changes to the synaptic weight in circuits A, B and C; (A) Frequency
response and (B) Magnitude in decibels.

than we would expect from the linear model. This is because the linear model is accurate in a neighborhood440
of the point at which it was linearized.441

Now, let us consider H(ν) as the response of an ideal low-pass filter, and W (ν) the response of the442
proposed neuronal filter, the counter-efficiency of W given H is calculated as443

ψ(W |H) =

∫ νc

0
|W (ν)−H(ν)| dν +

∫ νf

νc

|W (ν)| dν (39)

where νc is the cut-off frequency and νf is the last evaluated frequency (in this relationship, the lower the444
value, the more efficient the filter is). Since, in terms of magnitude, a frequency band when cut by an ideal445
filter should be attenuated towards negative infinity (−∞), we have to pick a limit for the calculation of the446
area under the curves. In our case, after a visual inspection, the baseline for calculation chosen was −25447
dB, because this is the closest integer value to the lowest values of magnitude.448
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Figure 10. Counter-efficiency of the circuits when compared to ideal filters (the lower the value, the better
the filter’s performance).

Frontiers 19

PUBLICATION 2: RECONFIGURABLE FILTERING OF NEURO-SPIKE
COMMUNICATIONS USING SYNTHETICALLY ENGINEERED LOGIC CIRCUITS

76



Adonias et al. Reconfigurable Synthetically Engineered Neuronal Filters

Figure 10 depicts the counter-efficiency analysis performed for the three circuits. As it is shown, for449
different frequency bands we have some circuits performing better than others. Also, each circuit has a450
preferable frequency band for achieving maximum efficiency. For frequencies lower than or equal to 80 Hz,451
Circuit C seems the most efficient, especially at 60 Hz, while frequencies around 100 Hz show Circuit B as452
the most efficient which is also the band where it performs the best. Circuit A, on the other hand, has its453
best performance for 120 Hz, and probably for higher frequencies as well if the trend continues.454

This shift in performance may allow us to control which type of circuit we want to activate inside the455
brain depending on which activity the subject is performing at the time, e.g. being awake or being asleep.456
These changes may be induced by the intake of specific drugs that alter synaptic properties in a neuronal457
connection.458

Figure 11 shows a parallel analysis between the magnitude in dB and the accuracy of the filters with459
AND gates in cascade. Each circuit is identified by a pair of characters, the first is the letter referring to the460
circuit analyzed, the second is how many AND gates were connected in cascade. For example, A2 means461
Circuit A with two AND gates in cascade, as illustrated in Figure 5B.462
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Figure 11. Parallel between Magnitude (dB) and Accuracy of the circuits with AND gates in cascade.

The results suggest that, by increasing the number of gates in cascade, we have to deal with attenuation463
in the network due to propagation caused by specific characteristics of the cell, such as the connection464
probability; hence, the more gates in cascade the worse the performance of the circuit. Also, even though465
the ratio keeps going downwards, at some point, the accuracy will start to shoot up. With careful evaluation,466
the dip in the accuracy along mid-range frequencies is very low in terms of scale, showing a difference of467
only around 0.03 on the values of accuracy.468

4 DISCUSSION

Synaptic weight plays a role in the influence of the pre-synaptic stimuli and its impact on the post-synaptic469
neuron and has a value proportional to the synaptic conductance (Gardner, 1989) which is driven by the470
amount and type of neurotransmitters that are being bound to the post-synaptic terminals. The higher471
the connection probability between pairs of neurons, the stronger the influence of a specific synaptic472
weight. This is due to the proportional relationship that the weight has with each synaptic connection that473
individually releases a certain amount of neurotransmitters, hence, different neuron types may affect the474
influence of a fixed value of synaptic weight. This explains how the accuracy values fluctuate between475
different types of gates and circuits as shown in Fig. 11. Within a larger network spatial dimension, the476
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types of neurons may drive a higher accuracy fluctuation since the network connection exhibits different477
synaptic weights between each other.478

With our model, we have mainly investigated the attenuation on the spiking frequency for three different479
types of circuits in which we decrease the number of OR gates by replacing them with AND gates.480
We were also able to have the fine-tuning synaptic properties showing a difference of around 5 dB in481
performance between the curves in Figure 9B. Changes in the synapse are also considered (Vogels and482
Abbott, 2005), either by strengthening or weakening specific synaptic connections, logic gates were483
built within a homogeneous network of integrate-and-fire neurons. Moreover, the experiments conducted484
by (Goldental et al., 2014) followed a procedure that enforced stimulations on neuronal circuits within485
a network of cortical cells in-vitro and they do propose other types of gates such as XOR and NOT.486
Furthermore, we increased the number of AND gates in a cascade-like manner in order to confirm that487
the longer the line of cascade gates, the more attenuated the signal should be if none of those elements488
receives any kind of external stimuli despite the spike coming from the circuit, and this result is depicted489
in Figure 11. A peak value in the difference of around 8 dB occurs in Circuit A, decreasing to around490
5 dB in Circuit B and there is a small difference in Circuit C. The transfer function derived from the491
Hodgkin-Huxley linear model suggests a band-pass behavior of the system (Plesser and Geisel, 1999) for492
very low frequencies leaving us with a low-pass filter acting on higher frequencies ranging from 5 to 150493
Hz. Considering the time for a spike to be fired that comprises depolarization, repolarization, and refractory494
period, higher frequencies will lead to saturation and non-realistic behavior of neuronal firing.495

Our results, therefore, suggest that neuronal logic circuits can be used to construct also digital filters,496
filtering abnormal high-frequency activity which can have many sources including neurodegenerative497
diseases. A metric of counter-efficiency was also proposed, which should show how far apart the real results498
are from the ideal cases. We found that frequency bands were found to be of optimal value for different499
types of circuits such as 60 Hz for circuit C, 100 Hz for circuit B, and 120 Hz for circuit A, as shown500
in Figure 10. Based on the presented results, we demonstrate that by reconfiguring the gates inside the501
digital filters we can shift the intensity with how we attenuate the spiking frequency allowing an on-the-fly502
adaptation of the filtering tasks depending on the activity that is being performed by the subject where, for503
instance, circuit C should outperform both A and B for frequencies lower than or equal to 80 Hz.504

The envisioned application of the proposed mathematical framework is for in-silico pharmacology and505
how it can be used to provide advanced prediction supporting computational strategies to test drugs. Since506
drug design and discovery in neuroscience are very challenging, especially due to the complexity of507
the brain and the significant impediment of the blood-brain barrier (BBB) imposes on the delivery of508
therapeutic agents to the brain. The success rate for approval by competent authorities of such drugs is less509
than 10%. Such a low rate is attributed not only to factors related to the disease itself, such as complexity,510
slow development, and gradual onset but also, to the limited availability of animal models with good511
predictive validity and the limited understanding of the biological side of the brain (Geerts et al., 2020).512
The system model derived from a set of coupled neuron compartments can help push forward the design of513
these neuronal filters and provide a platform for in silico drug-induced treatments on top of engineered514
biological models of neurons. A platform that could lead to cost-effective drug development and analysis of515
potential bio-computational units capable of enhancing signal processing in the brain, as well as predicting516
long-term effects of using a specific drug are potential uses of the proposed mathematical framework.517
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5 CONCLUSION

In this work, we proposed a reconfigurable spike filtering design using neuronal networks that behave as a518
digital logic circuit. This approach requires the cells to be sensitive to modifications through chemicals519
delivered through several proposed methods available in the literature. From the Hodgkin-Huxley action520
potential model we developed a mathematical framework to obtain the transfer function of the filter. This521
required a linearization of the Hodgkin-Huxley model that changes the cable theory simplification for each522
cell compartment. To evaluate the system, we have used our transfer function as well as the NEURON523
simulator to show how the frequency of operation, logic circuit configuration as well as logic circuit524
size can affect the accuracy and efficiency of the signal propagation. We observed that all-ANDs circuit525
produces more accurate results concerning their truth-table when compared to all-ORs. In addition, the526
results show that each digital logic circuit is also reconfigurable in terms of cut-off frequency of the filter,527
by manipulating the types of gates in the last layer of the circuit.528

We believe the proposed filter design and its mathematical framework will contribute to synthetic biology529
approaches for neurodegenerative disorders such as epilepsy, by showing how the control of cellular530
communication inside a small population can affect the propagation of signals. For future work, we plan531
the use of non-neuronal cells, e.g. astrocytes, for the control of gating operations and the assessment of532
neuronal filtering capabilities at a network level. Treatment techniques based on this method can be a533
radical new approach to reaching precision and adaptable outcomes, inspired from electronic engineering534
as well as communication engineering. Such techniques could tackle at a single-cell level, neurons affected535
by seizure-induced high-frequency firing or bypass neurons that have been affected by a disease-induced536
neuronal death and degeneration, thus keeping the neuronal pathway working at a performance as optimal537
as possible.538
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Neuron Signal Propagation Analysis of
Cytokine-Storm-induced Demyelination

Geoflly L. Adonias, Harun Siljak, Michael Taynnan Barros, and Sasitharan Balasubramaniam

Abstract— Throughout history, infectious diseases pan-
demics have been showing humanity how vulnerable we
are and, also, how they can induce a mindset shift con-
cerning social and economic aspects. While numerous yet
unknown factors are being investigated in terms of the dis-
tributed damage that a viral infection can do to the human
body, recent studies have also shown that the infection
can lead to lifelong sequelae that could affect other parts
of the body, and one example is the brain. As part of this
work, we investigate how viral infection can affect the brain
by modelling and simulating a neuron’s behaviour under
demyelination that is affected by the cytokine storm. We
quantify the effects of cytokine-induced demyelination with
an end-to-end phenomenological model on the propagation
of action potential signals within a neuron. We used infor-
mation and communication theory analysis on the signal
propagated through the axonal pathway under different in-
tensity levels of demyelination to analyse these effects. Our
simulations demonstrate that virus-induced degeneration
can play a role in the signal power and spiking rate which
compromise the propagation and processing of information
between neurons. We also propose a transfer function that
models these attenuating effects that degenerate the action
potential and has the potential to be used as a frame-
work for the analysis of virus-induced neurodegeneration
and pave the way to an improved understanding of virus-
induced demyelination.

Index Terms— Neuron, Action Potential, Demyelination,
Molecular Communications, Cytokine Storm, Hodgkin-
Huxley.

I. INTRODUCTION

The recent outbreak of the coronavirus disease 2019
(COVID-19) pandemic caused by the severe acute respi-
ratory syndrome coronavirus 2 (SARS-CoV-2) has shaken
society as a whole, leaving a long-lasting impact on people’s
health. As a result, scientists from multidisciplinary fields

This publication has emanated from research conducted with the
financial support of Science Foundation Ireland (SFI) for the CONNECT
Research Centre (13/RC/2077). M.T.B. is funded by the European
Union’s Horizon 2020 Research and Innovation Programme under the
Marie Skłodowska-Curie grant agreement No. 839553.

G. Adonias is with the Walton Institute for Information and Commu-
nication Systems Science, Waterford Institute of Technology, Waterford,
Ireland, e-mail: geoflly.adonias@waltoninstitute.ie.

H. Siljak is with the Department of Electronic and Electrical Engineer-
ing, Trinity College Dublin, Dublin, Ireland, e-mail: harun.siljak@tcd.ie.

M. Barros is with the School of Computer Science and Electronic
Engineering, University of Essex, Colchester, United Kingdom, and
CBIG/Biomeditech, Faculty of Medicine and Health Technology, Tam-
pere University, Finland. e-mail: m.barros@essex.ac.uk.

S. Balasubramaniam is with the Department of Computer Sci-
ence and Engineering, University of Nebraska-Lincoln, USA, e-mail:
sasi@unl.edu.

have been joining efforts and resources towards the study of
not only the epidemiologic characteristics and transmission
dynamics of the virus, but also of the physiological damage to
the human body as the infection is prolonged. SARS-CoV-2 is
well known for affecting primarily the respiratory system and
can potentially leave lifelong sequelae in tissues and organs.
Furthermore, there has been an increase in works that suggest
SARS-CoV-2 may be able to invade the nervous system [1]–
[4] and elicit neurodegeneration [5], [6] where sequelae may
have other detrimental effects on patients’ lives post-infection.

Viruses that present the ability to infect nerve cells are
known to exhibit neurotropic properties and can also be called
neuroinvasive. By infecting cells in the nervous system and
replicating themselves within it, these viruses can negatively
impact neurological functions and even cause severe nerve
damage by triggering a pro-inflammatory immune response
[6]. Unfortunately, SARS-CoV-2 is not the only virus that
exhibits this kind of behaviour, for example, it has been shown
that the Zika virus (ZKV) [7] can infect the peripheral nervous
system (PNS) and, sometimes, spread to the central nervous
system (CNS). Furthermore, viruses such as the human im-
munodeficiency virus (HIV) [8], can infect the CNS and cause
neuroinflammation which induced by an immune response of
the body and, consequently, lead to neurodegeneration [9]. A
growing amount of data from the past few years support the
hypothesis that chronic damage caused by different infectious
agents can lead to neurodegeneration [10], as early experimen-
tal models of virus-induced demyelination have indicated [11].

Viruses are known for causing dramatic structural and bio-
chemical changes to the host cell, by hijacking and exhausting
its machinery for replication until, eventually, the cell is
killed. This viral manipulation of a host cell provokes neu-
roinflammatory defence mechanisms that can be characterised
by numerous toxic-metabolic derangements, such as cytokine
storms (Fig. 1(a)). Such inflammation could potentially lead to
several types of neurodegeneration, including demyelination.
As cytokines are released to fight the infection, healthy tissues
could be affected as a “collateral damage” of the fight against
infectious agents [12]. Other types of coronavirus have been
known to cause demyelination, such as the murine coronavirus
(M-CoV), which has been identified to cause demyelinating
disease and, even after the virus is cleared from the CNS,
the demyelination can continue for a few months [12]. This
behaviour also matches findings on SARS-CoV-1, which re-
ports a decrease in viral titers as clinical disease worsens [13].
M-CoV is a type of coronavirus of the same genus (betacoro-
navirus) as SARS-CoV-2, and it is believed to be 43.8%-48%
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Fig. 1. Pathogenesis of a virus-induced demyelination.

similar to this novel coronavirus [14]. SARS-CoV-2, when
compared to SARS-CoV-1, triggers lower levels of interferons
and pro-inflammatory cytokines and chemokines. However, it
is capable of infecting and replicating a significantly higher
amount of viruses in human tissues [15].

This paper presents a systems-theory-based analysis of the
demyelination that is, either directly or indirectly, caused by
viral infections from the perspective of MC, more specifically,
a neuro-spike MC. The goals of this paper are (1) to propose
a model extension coupled with computational analysis on
the Hodgkin-Huxley formalism to account for the effects of
cytokine storms indirectly caused by viral infections; (2) to
provide insights on how the demyelination will affect the neu-
ronal information along the axonal pathway; and (3) to provide
a transfer function (TF) model that describes the effects of the
membrane action potential caused by the degeneration of the
myelin sheath. This TF can be considered fundamentally as
a model of the demyelination process itself. It is intrinsically
tied with the behaviour of equivalent resistance-capacitance
(RC) circuits, but at the same time, has a reduced complexity

as it opts for exponential asymptotics. Given that complex
cascades of equivalent simple blocks (in our scenario, myelin
sheaths) are traditionally well-approximated by first-order
transfer functions with time delay and the underlying physical
rationale, our model joins the family of established, applicable
biophysical transfer function models. We expect that these
analyses not only could pave the way for more in-depth studies
that can support in vitro and in vivo experimental works on the
neurological effects induced by neurotropic viral infections,
but also serve as a prediction tool that can help to guide
future experimental works. It may even be necessary that, as
the demyelinating scenarios get more and more biologically
plausible, future works may have to fine-tune some of the
parameters, e.g. regarding the type of cell or the intensity of
cytokine-storm-induced demyelination, of the proposed model
in order to have an analysis as accurate as possible.

The contributions of this work are as follows:
‚ A mathematical model that serves as a building block for

a transfer function of the signal propagation: We present
a model inspired by the well-documented fact that viral

PUBLICATION 3: NEURON SIGNAL PROPAGATION ANALYSIS OF
CYTOKINE-STORM-INDUCED DEMYELINATION

85



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 3

infections trigger cytokine storms and lead us towards
a general transfer function that accounts for the propa-
gation of the signal. The cytokine storms are counter-
measures of the immune system against the infection.
We investigate the signal power, the signal attenuation
and magnitude-squared coherence (MSC) analysis of the
axonal pathway as a communication channel.

‚ An analysis of the effects of demyelination on the neu-
ronal action potential propagation: We conduct a variety
of analyses, such as latency, attenuation and spiking rate,
on the spike trains that pass through a demyelinated
pathway. Furthermore, we also analyse how the intensity
of cytokines storms correlates with the amount of atten-
uation present in the signal at the output of the neuron.

‚ A transfer function model that accounts for the effects
of the demyelination-induced attenuation: We propose a
transfer function that describes the transition of a healthy
to an unhealthy neuron. The model accounts for sheath-
by-sheath demyelination which affects membrane poten-
tial, peak times and spike width. This should lead to more
in-depth analysis and open a new view on demyelination
modelling, especially those triggered by a neurotropic
viral infection and how it affects the transmembrane
molecular exchange (i.e. exchange of ions and release
of neurotransmitters) of the neurons.

II. BACKGROUND AND LITERATURE REVIEW

The virus replication process exhausts host cells leading
to the activation of the immune system, which calls for the
work of macrophages. Those are types of cells of the immune
system, and their resident in the brain is the microglia [1],
[4]. Macrophages secret pro-inflammatory cytokines such as
interleukin-1 (IL-1), interleukin-6 (IL-6) and tumor necrosis
factor alpha (TNF-α) aiming to fight the infection. These
cytokines exert cytotoxic effects on neurons and glial cells,
e.g. oligodendrocytes, damaging the myelin sheaths which are
responsible for providing support and insulation to axons [16].
The dynamics of cytokine storms and their efficiency in
fighting infections without further cellular damage become of
increased attention to measure the neuroinflammatory effects
of COVID-19. Ludwig et al. [17] found out that as the
neuropathy is more severe, the higher the serum concentration
of TNF-α and IL-6. This matches more recent results found
by Chen et al. [18] and Song et al. [19], cytokine levels
concerning the severity of COVID-19 cases. They identified
a positive correlation between the levels of cytokines and
the severity of the COVID-19 cases, meaning that the more
severe the COVID-19 cases were, the higher were the levels of
cytokines, which can lead to demyelinating lesions [5], [20].

On the other hand, the dynamics of a cytokine storm can
be similar for different inflammatory scenarios, yielding the
need for a more general approach that evaluates cytokine
dynamics. An example is the work of Waito et al. [21]
in which they match recordings of 13 different cytokines
with a model of non-linear ordinary differential equations.
Likewise, Yiu et al. [22] analysed the dynamics of cytokine
storms and provided evidence for how cytokines induce or

inhibit other cytokines. Additionally, some pieces of literature
report the effects of cytokine storms on specific neuronal and
non-neuronal structures. For instance, the work of Bitsch et
al. [23] shows a negatively correlated relationship between the
amount of microglia-produced TNF-α and the concentration
of myelin oligodendrocyte glycoprotein (MOG). It shows that
the more TNF-α there is, the less MOG oligodendrocytes
will produce, compromising the myelin sheath structure. On
the other hand, Redford et al. [24] showed how the number
of axons found in sciatic nerves is affected. They found
that the more the concentration of TNF-α is increased, the
more axons are found to be damaged. However, the complete
biophysical models of these various effects to neurons caused
by infection, particularly infections from COVID-19, require
urgent attention since correct treatment procedures for acute
infection damage can benefit from mathematical modelling.

In the past decade, Molecular Communications (MC) has
been improving biological models by accounting for the
communication of cells using their signalling mechanisms as
information carriers [25]. MC is a new field that is looking
to characterise and engineer biological cells using concepts
from communication engineering and networking [26]–[28], it
bridges electrical and communications engineering, molecular
biology and biomedical engineering and provides complete
end-end models of biophysical transmission of molecules,
their propagation, and their reception [29]–[32]. A recent
survey [33] reports numerous works concerning the use of MC
for the analysis and modelling of infectious diseases. However,
accounts for the effects of infections are still missing from a
biophysical approach even within MC models, as the COVID-
19 effects are many, and the molecular interactions with the
body can be used to predict the behaviour of a population of
cells, even tissues and organs. The emergence of novel MC
models for biophysical processes, such as the demyelination
induced by COVID-19, delivers an in-depth analysis of tissue
behaviour that is needed for treatments based on synthetic
biology. Even further targeted drug delivery technology can
alleviate the cytokine storms effects on neurons and provoke
the restoration of the myelin sheath [34].

III. END-TO-END COMPUTATIONAL MODEL FOR A
CYTOKINE-STORM-INDUCED DEMYELINATION

Models that describe the dynamics and evolution of cytokine
concentrations, without regard to the cells that secrete or are
affected by them, have been proposed by Yiu et al. [22].
This model was extended by coupling together with a neu-
ronal model that implements the behaviour of a myelinated
axon [35]. By extending these models, we performed simu-
lations with the default parameters of the cell (such as the
length and diameter of each of their compartments) based on
the original model. Therefore, the myelin sheath properties
concerning their morphological characteristics were not modi-
fied or changed. We studied and quantified the propagation
of action potentials on a Layer 5 (L5) pyramidal neuron
mimicking damage to its myelin sheath. All simulations were
performed with extensions to the NEURON Simulator [36].
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A. Cytokine Signalling in Microglia

The growth and decay of an individual cytokine’s response
to its given initial state are first represented by a second-order,
linear, time-invariant ordinary differential equation. Denoting
the serum concentration, ρptq in pg/mL, and its rate of change,
∆ρptq, it can be represented in a vector-matrix form as follows

„
9ρptq
9∆ρptq


“
„

0 1
´a ´b

 „
ρptq

∆ρptq

,

„
ρp0q

∆ρp0q


given, (1)

where the initial concentration, ρp0q “ 0, is referenced to the
cytokine’s basal level, and the initial rate of change, ∆ρp0q,
is stimulated by the TGN1412 infusion (see [22] for further
details). Also, a and b are positive constants that express the
sensitivity of the cytokine’s acceleration to concentration and
rate of change.

The cytokine’s response modes are characterised by the
eigenvalues, λ1 and λ2 (rad/day), of the stability matrix of
the system, and this is as follows

„
9ρptq
9∆ρptq


“
„

0 1
´λ1λ2 pλ1 ` λ2q

 „
ρptq

∆ρptq

,

„
ρp0q

∆ρp0q


given.

(2)
The parameters are chosen to minimize the error between

the cytokine concentration and the clinical trial measurements
performed in [22]. For TNF-α, λ1 “ λ2 “ ´2.63 and
∆ρp0q “ 32821. In this work, we will be investigating the
inflammatory effects of TNF-α, as this cytokine is well-known
for its pro-inflammatory properties.

B. Conduction Through a Myelinated Axon

It is well known that some neurons contain a myelin sheath
wrapped around sections of their axons. Myelin sheath helps
propagate electrical impulses, known as action potentials (AP)
or spikes, and avoid significant attenuation due to parallel
synaptic processes. According to Cohen et al. [35], the myelin
sheath dynamics can be described using circuit theory (Fig. 2).
This circuit is then coupled with the Hodgkin-Huxley (HH)
circuit model [37], which describes the membrane potential
dynamics in neurons.

Axial resistance, Ri (Ω ¨ cm´1), of the axon core, can be
defined as the ratio between axial resistivity, ri (Ω ¨ cm), and
the cross-sectional area of the axon core, and this is described
as

Ri “ 4ri
πd2

, (3)

where d (nm) is the axon core diameter. Let δpa (nm) be the
radius of the periaxonal space, then

δpa “ 1

2

«
´d`

d
d2 `

ˆ
4rpa
πRpa

˙ff
, (4)

where the axial resistance in the periaxonal space, Rpa (GΩ ¨
cm´1), is calculated as the ratio between periaxonal resistivity,
rpa (Ω ¨ cm), and periaxonal cross-sectional area. In this case,
the axon core cylinder is surrounded by both the periaxonal
and perinodal spaces forming a “larger” axon cylinder of
diameter d` 2δpa, thus

Rpa “ rpa
πδpapd` δpaq , (5)

and, an analogous calculation can be performed for δpn (nm),
rpn (Ω ¨ cm) and Rpn (TΩ ¨ cm´1).

Recognising that a myelin sheath is an in-series compaction
of n layers, the radial resistance of the sheath, Rmy (kΩ¨cm2),
is the sum of the resistance of each myelin membrane, Rmm
(kΩ ¨ cm2), formulated as

Rmy “
nÿ

i“1

Rmmi
, (6)

and, the radial capacitance of the myelin sheath, Cmy (µF ¨
cm´2), may vary inversely to the sum of the capacitances of
each of its composing membranes, Cmm (µF ¨ cm´2), thus

1

Cmy
“

nÿ

i“1

1

Cmmi

, (7)

where the resistance and capacitance of a single myelin
membrane are Rmm and Cmm, respectively. Based on this,
equations (6) and (7) can be represented in terms of the number
of myelin lamellae, nmy , as follows

nmy “ Rmy
2Rmm

“ Cmm
2Cmy

. (8)

For a more detailed analysis of the myelin sheath’s mod-
elling, the reader is referred to the work of Cohen et al. [35].
Each of the of the lamellae that composes the whole myelin
sheath is modelled with the same set of parameters. This is
basically an assumption that each myelin lamellae is identical
to the other and that the degeneration caused by the demyeli-
nation affects the myelin sheath proportionally.

C. Cytokine-induced Demyelination
As previously discussed in Section I, the literature indi-

cates that, as microglias release pro- and anti-inflammatory
to fight the infection, demyelination may also occur as a
side effect and, consequently, compromise the neuronal signal
propagation. There are numerous pieces of evidence linking
cytokine storms to neurodegeneration [17], [21]–[23], however
to the best of our knowledge, none of them goes as far
as linking the storm’s intensity to an approximate number
of myelin lamellae, nmy . A linear regression (R “ 0.508,
p “ 0.001) applied by Ludwig et al. [17] to their own data
reveals a proportional relationship between the severity of
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the neuropathy, ζ, (in our scenario, the neuropathy is the
demyelination) and the serum concentration of TNF-α, ρptq,
as

ζptq “ 20.727´ 0.9228 ¨ ρptq. (9)

Even though the cytokine dynamics in [22] are triggered by
a specific antibody, the proportionality presented in Equation 9
is also suggested by the works of Hartung [38] and Empl et
al. [39]. In this relationship, the stronger the cytokine storm
is, the more severe the degeneration of the myelin sheaths.
Furthermore, in this work, we are using data from [35] as a
reference to indicate healthy myelin with 13 lamellae. In [17],
the severity of the neuropathy was defined by scoring four
nerve functions as ‘0’ for typical values of the nerve, ‘1’ for
affected nerves (either decreased amplitude and/or decreased
nerve conduction velocity) and ‘2’ for no stimulation possible.
As we are looking at it from the perspective of nmy , we had
to re-scale these scores by applying linear interpolation to
indicate approximately how many sheaths are being degraded.
Therefore, building on top of their findings we hypothesise
that the worst-case scenario would have a score of 8 (four
nerve functions multiplied by two – no stimulation possible)
which indicates nmy “ 0 and the best-case scenario would
have a score of 0 indicating nmy “ 13. Similar experiments
conducted by the scientific community potentially on top of
this work can re-scale ζptq depending on their reference of
normal myelination as the number of myelin sheaths may vary
among different types of neurons from different parts of either
the CNS or the PNS.

The model proposed by [17] addresses neuropathies in the
PNS in which peripheral neurons are myelinated by Schwann
cells. On the other hand, this work examines neuropathies in
the CNS where myelination is mainly controlled by oligoden-
drocytes. Even though oligodendrocytes and Schwann cells
can express different types of myelin proteins, a major dif-
ference would be that oligodendrocytes can myelinate several
axons at the same time while Schwann cells can wrap around
only a single axon at a time [40], [41]. In terms of myelination
processes, both types of cells are quite similar and the model
itself already leaves room for improvement as the parameters
may be finely tuned as soon as new evidence is presented in
the literature.

D. A Linear Model of Demyelination
The linearisation process aims to find a linear approximation

of a nonlinear system, i.e. the Hodgkin-Huxley model, at
an equilibrium point. This means that for small variations
around said point, the linear system should behave similarly
to the nonlinear system [42]. The linear model is the result of
the process of linearisation applied to the conventional (non-
linear) Hodgkin-Huxley model. In this process, the dynamics
of the ionic channels are “lost”, the components that represent
each channel (e.g. variable conductance and a voltage source)
are “reduced” to a static conductance and an inductance. As
the demyelination only affects the RC circuits coupled to
the internodal compartments, the electronic elements for the
axon should remain in their default parameters and the myelin
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Fig. 3. Mapping of the model components and the effects on the
propagated signal, and illustration of signal behaviour as it transitions
from healthy to unhealthy state.

sheath RC circuits be affected by the inflammatory effects of
a cytokine storm. Based on a given healthy neuron, we want
to predict the signal effects on spike trains that are expected
from a demyelinated neuron. Let n, the number of the myelin
sheaths, be a tunable parameter of the model (in this section,
we refer to nmy as n for clarity of index notation). This
mechanism is depicted in the block diagram in Fig. 1(b).

In telecommunication systems, the study of damage and
degradation often asks for a model of damage effects which
could explain how healthy (i.e., signals characteristic to the
system without damage) transition into faulty signals (i.e.,
signals characteristic to the damaged system). Observing faulty
signals resulting from the propagation of standard signals
through a transfer function superimposed on the original sys-
tem is a well-established concept; examples of its application
include modelling of cables [43]. It makes intuitive sense to
observe such a transfer function as taking the healthy system’s
output and delivering the faulty, unhealthy signal as the faulty
output, which results in signal degradation for a worsening
channel it traverses. In our case, this means that we will
construct a transfer function which, for an input that represents
a healthy neuronal signal, delivers an output equivalent to that
of a demyelinated neuron. The opposite process, in which
an “adaptor” transfer function would convert a signal from
a deteriorated neuron into one of a healthy neuron, is anti-
causal as it would have to introduce negative time delays in
the signal.

In this regard, when we speak of our model, we have the
transfer function in mind. Our model’s input is the series of
spikes produced by a healthy pre-synaptic neuron and the
model’s output is the series of spikes a demyelinated neuron
would fire, as illustrated in Fig. 1(b). The model parameters
are factors in the transfer function; their value depends on
the number of myelin sheaths we desire the demyelinated
neuron to have. Hence, the number of myelin sheaths is
a tunable scalar value characterising the model. Now that
we have established the processing chain, the choice for the
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transfer function is made by observing the general trends in
the output signals for various values of n. Namely, as seen
in Fig. 3, the transfer function emulating the effect of myelin
deficiency needs to allow for the attenuation of the signal,
widening of the spikes, and overall propagation delay. An
obvious candidate is the traditional First Order Plus Time
Delay (FOPTD) function [44], given by

Wnpsq “ kn
1` Tnse

´τns, (10)

where we assume that the parameters kn, Tn and τn have
different values for different values of n. While those values
could be tabulated and looked up for specific values of n, we
set a more ambitious goal of determining the laws according
to which they change. Here we make a hypothesis that they
follow exponential law (namely, log kn “ a0 ¨anr , Tn “ To ¨Tnr
and τn “ τ0 ¨ τnr ), based on the following reasoning.

Turning a healthy signal into a deteriorated one in our model
is a process of cancelling the effect of passing through some
of the sheaths. For example, if the healthy baseline signal is
achieved with n “ 13, emulation of n “ 10 can be interpreted
as undoing the effect of ∆n “ 3 sheaths, i.e. the effect of a
cascade of three blocks representing a “sheath undo function”.
This approximation is good for larger ∆n, as it allows for the
approximations like p1` T s̄q∆n « 1` T∆ns, i.e. giving rise
to a Tn „ en law. In Section IV, we revisit this hypothesis,
both in terms of the exponential law’s existence and in terms
of the domain of accuracy. Introducing exponential laws for
the coefficients in this transfer function gives us the final form
of our transfer function, which is represented as

Wnpsq “ ea0¨anr
1` T0 ¨ Tnr s

e´τ0¨τ
n
r s “ ea0¨anr´τ0¨τn

r s

1` T0 ¨ Tnr s
. (11)

The final form of equation 11 suggests the rationale behind
suggesting exponential behaviour of a “ log k instead of k
itself: in the s-domain, we obtain a function of the form
epα`βsq

γ ` δs , which in turn in the Fourier domain corresponds

to
epα`jβωq

γ ` jδω . Knowing that the behaviour of the myelin

circuit originates from connections of R (purely passive, real
impedance) and C (purely active, imaginary impedance), it is
expected to observe this symmetric real-imaginary coupling of
terms.

The knowledge about the equivalent model of the myelin
circuit, a ladder of resistors and capacitors supports the choice
of FOPTD, and this is known as a convenient model for
large RC circuits [45]. Namely, the circuit consists of linear
components and as such can be represented by a linear
model. Furthermore, with the increasing order of such a linear
model, there is a necessity to replace it with a simpler first-
order model such as FOPTD as it grows and will keep the
complexity of the model low while retaining accuracy.

FOPTD is not an uncommon choice in biophysics, where
it has been used to model glucose control [46], because they
are simple for identification [44] and for quick and accurate
tuning of the controllers that can regulate their behaviour [47].

Nonetheless, our model may help in designing chemical con-
trol loops for myelin reinforcement in a similar manner.

To verify the quality of the model, we introduce a metric
based on root mean square error (RMSE):

Mn “ 20 log10

ˆ
RMSEN,n
RMSEW,n

˙
. (12)

Here, RMSEW,n stands for the RMSE of the output of our
transfer function Wn compared to the actual output signal for
n sheaths, i.e. if the m is the number of samples, which is
represented as

RMSEW,n “
d

1

m

ÿ

iě1

pxn,i ´ xW,iq2. (13)

Analogously, we can find the value for RMSEN,n which
corresponds to the RMSE of the output signal produced by
another model N compared to the nth actual output signal. The
quantity Mn is positive where our model Wn is more accurate
(has lower RMSE) than the model N we are comparing to it.

Certainly, the parameters might eventually change, however,
qualitatively speaking, changes in axon structure from different
neurons should exhibit similar behaviour to each other. For
example, some delay on signal propagation may be introduced
due to different axonal lengths [48] but, it should not affect
the shape of the action potentials as it is the case with
axons that have been demyelinated. Further more, the transfer
function works on sub-threshold neuronal signalling and this
stimulation technique usually does not lead to the firing of
action potentials even though it can still fire depending on
the intensity of the stimuli. Our aim is to apply a similar
approach to Khodaei and Pierobon [49] to study the impact
on the signalling caused by the demyelination that may have
been indirectly caused a viral infection.

E. Signal Analysis
Visually, we first noticed subtle shifts in amplitude (peak

potential reached by the membrane) and in time (spikes were
taking longer to reach their peak values). We then decided
to quantify these shifts, both in amplitude and in time, on
average, by proposing a metric that we called relative mean
shift. For the analysis on time shift, we consider the points
in time where each spike peaked at the input as T kin, where
k “ t1, 2, 3, ...,Ku identifies the order of each spike and, T kout
as the peak times at the output. Thus, we define the relative
mean time shift, δt (ms), as

δt “ 1

K

Kÿ

k“1

pT kout ´ T kinq, (14)

analogously, we can define the relative mean amplitude shift,
δv (mV), with V kin and V kout as the peak amplitudes of spike
k at the input (spike peak observed in the soma) and output
(spike peak observed in the axon), respectively.

As there is an average shift in time inside the channel itself
due to demyelination, we also expect an increase in latency as
we decrease nmy . In order words, latency is the time interval
between the input and the output, and it often occurs due
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Fig. 4. Measurements of attenuation and delay. All results except for Fig. 4(e), use the signal nmy “ 13 as their input and 1 ď nmy ď 12 as
the output. Fig. 4(e) uses the recordings from the soma of the neuron and is compared with 1 ď nmy ď 13.

to the channel or network’s intrinsic characteristics. In our
scenario, we are looking for the time the first spike peaked at
the output, concerning the point when this same spike peaked
at the soma of the neuron. Later, analogous to the relationship
between δt and the latency, we decided to look into a potential
attenuation on the power of the signal, P (mW), as we have
already discussed a relatively heavy mean attenuation in the
membrane potential, δv . Let us define P as

P “ lim
JÑ8

˜
1

2J ` 1

Jÿ

j“´J
|xrjs|2

¸
, (15)

where in a set of J samples, xrjs corresponds to the potential
of the membrane at the j-th sample.

We also quantified the attenuation of the signal, A in dB/100
m, which is the gradual loss of power of a signal over its
propagation through the channel. Depending on the attenuation
coefficient, one can calculate more accurately the attenuation
in a specific material. For our analysis, we used the generic
form of attenuation for RF cables. This decision is based on
the fact that the axonal pathway is modelled using cable theory
as a leaky cable. Thus,

A “ 10 ¨ log10

ˆ
Pi
Po

˙
, (16)

where Pi and Po, in W , are the input and output power of the
signal. In this analysis, the input is the spike train through a
healthy neuron and the output would be the spike train through
a demyelinated one.

Lastly, we also analysed the relation between the reference
spike train (nmy “ 13) and all other demyelinating scenarios
(1 ď nmy ď 12). The intention is to understand how much
power is being transferred between each pair of signals. With
that in mind, we applied a coherence (Cxy) metric, which is
described as

Cxypωq “ Sxypωq2
SxxpωqSyypωq , (17)

where Sxypωq is the cross-spectral density between the two
signals and, Sxxpωq and Syypωq are the power spectrum
densities of input and output, respectively.

IV. COMPUTATIONAL RESULTS AND DISCUSSION

Let us consider the proportionality between the severity of
the neuropathy, ζptq, and the number of myelin lamellae, nmy ,
as described in Section III-C. Our analysis consisted of an
evaluation of the neuronal behaviour and spike propagation
under normal circumstances (nmy “ 13), followed by an anal-
ysis on the demyelination by decreasing nmy . The objective is
to understand what happens to the neuronal information when
travelling through a demyelinated axonal pathway. In other
words, we are looking at the signalling within a single neuron
that has been impacted by the demyelination on its own, rather
than signals that have changed from pre-synaptic neurons that
may be affected by cytokine storms. The neuron receives an
external current of 3 nA for 15 ms starting at time t “ 2.5
ms in a 20-ms simulation. The spikes evoked under normal
circumstances are considered our input of the channel, and
the spikes at the far end of the axon are the output. The axon
itself is our communication channel, while the demyelination
is acting as an attenuator for the channel, as illustrated in
Fig. 1.

A. Analysis of a Demyelination-induced Channel
Attenuation

The results for δv and δt from Equation (14) are shown
in Figs. 4(a) and 4(d), respectively. The former shows that
membrane potential is on average affected by an eight-fold de-
crease. This matches fundamental computational neuroscience
theory on neuronal modelling which states that a neuron
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0 10 20 30 40 50
Frequency (kHz)

10 4

10 3

10 2

10 1

100

C
oh

er
en

ce

Mean
Std Dev

(c) Mean and standard deviation of the signal co-
herence for all nmy .

Fig. 5. Signal coherence between nmy “ 13 and (a) nmy “ 1; (b) nmy “ 12; and, (c) mean and standard deviation of the signal coherence
with 1 ď nmy ď 12.
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Fig. 6. Exponential relationships between signals from different de-
myelinated neurons compared to the healthy n “ 13 case.

gradually leaks a small amount of the input signal as it
travels through it, and this “leak” worsens on unmyelinated
cables [50], [51]. On the other hand, from the latency data
(Fig. 4(e)), we notice that there is a subtle “lag” for the signal
to travel across the axon even under normal circumstances
matching findings in the literature [52] for models of CNS
demyelination. This is most likely due to a maximum con-
duction speed inherent in the axonal membrane itself. As we
go from our worst scenario towards a regular healthy myelin
sheath, there is a massive decrease of about 73% in the latency.

Fig. 4(b) depicts how the spiking rate is affected by the
demyelination. As we expected, as the spikes start to get
wider and far from each other, the spiking rate gets lower.
This corroborates findings on demyelination-induced effects
on spiking rate [53]. The rate at which a neuron fires action
potentials is significant for modulating and encoding neuronal
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Fig. 7. Exponential relationships between signals from different de-
myelinated neurons compared to the healthy n “ 13 case.

information in cognitive, sensory and motor functions.
Fig. 4(c) shows that the decrease in signal power is quite

subtle, and from the worst-case scenario to the best, there
is a difference of less than 20µW. This indicates how de-
myelination affects the energy consumption per unit time
used to propagate the axon’s action potentials. As the signal
starts to get degraded, it is less and less likely a spike
would be evoked at the post-synaptic neurons connected to
a demyelinated cell [51]. Demyelination does not affect only
the post-synaptic neuron by reducing the chances of evoking
post-synaptic potential, but it can compromise the spiking rate
of the demyelinated neuron itself. Furthermore, we decided
to investigate the attenuation caused by the demyelination
from a more generic communication systems point of view
as expressed in Equation 16. The results presented in Fig. 4(f)
show how the signal is more attenuated as we remove each
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myelin sheath. It not only shows consistency between our
results and validates our hypothesis but also supports findings
on failing pre-synaptic AP due to demyelinating diseases [51].
We decided to sweep through the entire range of the number
of myelin sheaths instead of emphasising the cytokine storm
time-dependency because it made more sense as we wanted
to identify every potential demyelination effect to the axonal
pathway.

Lastly, Fig. 5 shows the results for the signal coherence. In
Fig. 5(a), we show the coherence with regards to our worst sce-
nario, nmy “ 1, in which there clearly are more oscillations in
lower frequency bands when compared to Fig. 5(b). Fig. 5(b)
shows the coherence for a light demyelination, nmy “ 12,
where only 1 sheath has been removed with regards to a
healthy scenario, nmy “ 13. Fig. 5(c), describes the mean and
standard deviation of how the coherence values (1 ď nmy ď
12) fluctuate in the 0´ 50kHz spectrum. Neuronal coherence
has been known to serve neuronal communication as an
indicator of the efficiency of the exchange of information [54].
In this work, it is noticeable how coherence measurements
show higher instability for severely demyelinated neurons
in comparison with light demyelination for low- and mid-
frequency ranges. As demyelination worsens, so does the
reliability of the information going down the axonal channel.
All coherence plots showed some fluctuations for the higher
end of the frequency range. We believe the fluctuations in the
coherence plots is a finite window effect. In other words, the
Fast Fourier Transform (FFT) implicitly filters the data with
a rectangular time-domain filter, which is a sinc-shaped filter
in the frequency domain. For this reason, we are bound to get
those lobes.

B. The Linear Model Identification and Verification

Let us observe the changes that the output of a neuron
goes through when n varies, and understand these dynamics as
depicted in Fig. 3. Reduction in the number of myelin sheaths
(n, 1 ď n ď 13) causes an increasing delay in the signal, i.e.,
spikes start later in neurons with less myelin, and they take
longer to reach the peak value (in this section, we also refer
to nmy as n for improved consistency with Section III-D). On
the other hand, in terms of the shape of the spikes, we observe
the effect on the spike height and the spike width (full width
at half maximum, FWHM) also in Fig. 3. This solution was
adopted by identifying a suitable transfer function.

In Figs. 6(a) and 6(b) we verify that time intervals repre-
sented here correspond to ∆t “ tn´ t13 for 1 ď n ď 12, i.e.,
they are the “lag” observed between 13-sheath neuron, which
will be the input to our model and other analysed scenarios
that the model needs to approximate well, given the value of
n ă 13.

At this point, we can say that (1) for 1 ď n ď 10, we see
an exponential decay in the “lag” as n grows; (2) spike onsets
reach the values observed in n “ 13 one by one (1st spike for
n “ 10, 2nd for n “ 11, 3rd for n “ 12) while all the peaks
reach the n “ 13 time values in the same case of n “ 12. The
first conclusion suggests that we will have a transport delay
term e´τns in the transfer function, in which the delay τn

will be an exponential function of n. The second conclusion
suggests that this term cannot explain all of the dynamics:
some of the lag is contributed by a real pole ´1{Tn, i.e. a term
p1 ` Tnsq´1 in the transfer function. Furthermore, after n “
10, the delay term vanishes and the only effect seen is the one
of the pole (we will ignore this effect, as our approximation
focus will be for the interval up to n “ 10). Again, given the
linearity of the log plot, i.e. exponential nature of the curve,
it is expected that Tn is an exponential function of n.

In Figs. 7(a) and 7(b) we observe the behaviour of log-
arithms of spike amplitudes and pulse widths in the region
of interest, which suggests (1) time-invariance of the system,
as all three pulses collapse in the same amplitude curve,
and (2) that the change in the pulse width requires the real
pole ´1{Tn. This reasoning, graphically presented in Fig. 3,
confirms our hypothesis about the applicability of the FOPTD
transfer function (10) and its exponential coefficients from
Equation (11).

The identified parameters of the model 11 are a0 “ 0.35,
ar “ 0.7, τ0 “ 54.42, τr “ 0.66, T0 “ 20.27 and Tr “ 0.8.
Those values were found with the Levenberg-Marquardt [55]
numerical optimisation. The iterative procedure was conducted
by determining the values of kn, τn, Tn for n “ 6, then
using those values as initial guesses for n “ 5 and n “ 7,
and subsequent values. The relationship between exponential
approximation, or linearisation in the log-domain, and the best
choice of coefficients without exponential law assumption is
shown in Fig. 8(a).

It is expected that this would be a good approximation for
the observed signals in the “exponential domain”, 1 ď n ď
10. While the approximation can be accurate outside of this
domain as well, we focus on applicability within the range,
and we verified it using the RMSE metric introduced earlier in
Equation (12). For larger values of n, our numerical estimation
found τ to be zero, hence it could not be shown in a log plot.

Fig. 8(b), representing Mn for 1 ď n ď 12, gives the
answer to the following question: if one ignores the variability
in n and replaces every output signal pxnq with (a) one of a
completely deteriorated neuron N “ 1, (b) averagely damaged
neuron N “ 6, or (c) a healthy neuron N “ 13, how high
is the amplitude of error, compared to that of our model. As
expected, for n “ N this ratio goes down to ´8 dB as the
approximation with exact signals is perfect. However, for any
other value, even N ˘ 1, our approximation is superior (i.e.,
above 0 dB). It is important to emphasise that, as observed
in Figs. 4- 8, this demyelinating behaviour can be caused by
other sources of degeneration. However, there are no claims
those results are caused only by virus infections, rather we
can say that it is clear from the literature that there is a
specific demyelination caused by viruses and, we proposed a
phenomenological model that takes into account the potential
effects indirectly caused by a viral infection into the nervous
system.

V. CONCLUSION

In this work, we proposed an end-to-end model that takes
advantage of the fact that viruses can invade the nervous sys-
tem and affect the brain. This model expresses the dynamics
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Fig. 8. Estimation and performance for a linear model of demyelination;
(a) Estimated parameters of the transfer function, and their exponential
approximation and, (b) Ratio of the RMSE for approximating a demyeli-
nated with the single sheath case, average demyelinated neuron, or a
healthy neuron and RMSE for approximating the demyelinated neurons
with our transfer function.

of a cytokine storm and its relation to the amount of demyeli-
nation that may subject to a neuron. From evidence found
in the literature, we developed a phenomenological model
capable of mimicking cytokine-storm-induced demyelination’s
degenerative effects. We also proposed a transfer function
aiming towards a linear model of the demyelination. Using
traditional control and systems theory, we propose a FOPTD
function that could help the design of chemical control loops
for the reinforcement of myelin. It is important to emphasise
that, even though we believe the linear approach described in
this work can be a stepping stone for more complex systems,
the whole system itself is highly non-linear. Thus, this should
be taken into account as it can affect the accuracy of future
synthetically engineered therapeutics.

Although the discovery and design of new drugs is a timely
effort that require multidisciplinary teams working together, it
is important to not only understand what computational tools
can offer to improve the accuracy of proposed approaches but
also to reproduce cells and molecules interactions as an area
of computed-aided drug development. We believe that this
model can help bio-technologists as well as pharmacologists
to design drugs that will be able to minimise and, hopefully,
neutralise the impact of cytokine storms on myelin sheaths.
This could be achieved by adding new modules to the model
to facilitate the remyelination of axons and, even though the
process of remyelination rarely regenerates the myelin sheaths
back to their original state [56], this approach could be used

to determine the treatment strategy required to remyelinate the
neuron towards a state as close as possible to a healthy fully
myelinated neuron.

The results show that the demyelination induced by the
cytokine storm not only degrades the signal but also com-
promises the signal propagation inside the axon. The signal
is attenuated and shifted in time and influences the release
of excitatory neurotransmitters into the synaptic cleft. This
whole analysis led to the development of a transfer function
that fundamentally represents the process of demyelination
itself. It not only decreases the level of complexity of the
system linking itself with the behaviour of an RC circuit but
also underlies the physical rationale of the system by applying
biophysically plausible transfer function models. We believe
that the proposed models will contribute to bioengineering
approaches for neurodegeneration, especially demyelinating
disease.

For future work, we plan to couple our computational
modelling with wet-lab experiments to assess and improve
our model’s accuracy. There are many other interesting ex-
periments to be done on top of the current work, one example
would be whether cytokines diffusion would behave differently
in distinct parts of the brain as they also may present different
diffusion coefficients that need to be further investigated.
Also, different viral infections can trigger cytokine storms
with different concentration levels and many of those levels
may be similar to one another depending on whether there
are any similarities between the viruses under analysis. We
expect that our proposed technique could pave the way for
more sophisticated and precise approaches for the treatment
of neurodegeneration.
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Analysis of the Information Capacity of Neuronal Molecular
Communications under Demyelination and Remyelination

Geoflly L. Adonias, Conor Duffy, Michael Taynnan Barros,
Claire E. McCoy, and Sasitharan Balasubramaniam

Abstract— Demyelination of neurons can compromise the com-
munication performance between the cells as the absence of
myelin attenuates the action potential propagated through the ax-
onal pathway. In this work, we propose a hybrid experimental and
simulation model for analyzing the demyelination effects on neuron
communication. The experiment involves locally induced demyeli-
nation using Lysolecithin and from this, a myelination index is
empirically estimated from analysis of cell images. This index
is then coupled with a modified Hodgkin-Huxley computational
model to simulate the resulting impact that the de/myelination
processes has on the signal propagation along the axon. The
effects of signal degradation and transfer of neuronal information
are simulated and quantified at multiple levels, and this includes
(1) compartment per compartment of a single neuron, (2) bipartite
synapse and the effects on the excitatory post-synaptic potential,
and (3) a small network of neurons to understand how the im-
pact of de/myelination has on the whole network. By using the
myelination index in the simulation model, we can determine the
level of attenuation of the action potential concerning the myelin
quantity, as well as the analysis of internal signalling functions of
the neurons and their impact on the overall spike firing rate. We
believe that this hybrid experimental and in silico simulation model
can result in a new analysis tool that can predict the gravity of
the degeneration through the estimation of the spiking activity and
vice-versa, which can minimize the need for specialised laboratory
equipment needed for single-cell communication analysis.

Index Terms— Re/Demyelination, Lysolecithin (LPC),
Hodgkin-Huxley model, Myelination Index, Molecular
Communications.

I. INTRODUCTION

With the ever-growing knowledge of the biological processes
involved in the regeneration of nerve tissues, a better understanding
of these events is crucial for the creation of more robust models
that could accelerate the development of targeted therapeutics against
neurodegeneration [1]. For example, multiple sclerosis (MS) is an
autoimmune demyelinating disease (DD), characterised by localised
destruction of protective myelin sheaths around axons and subsequent
impairment of neuronal function and action potential (AP) propagation,
leading to the formation of sclerotic plaques across the central nervous
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system (CNS). In relapse-remitting MS (RRMS), demyelination
is caused by abnormal peripheral immune invasion of the CNS
and inflammatory attack against the myelin sheath, most notably
from activated T-cells [2]. This form of the disease is characterised
by “attacks” (relapse), followed by periods of recovery (remitting),
where innate repair mechanisms of the CNS restore damaged myelin
in a process known as remyelination. However, MS can also
manifest in the form of primary progressive MS (PPMS), where
demyelination is continuous and remyelination mechanisms appear to
be dysfunctional [3]. It is, therefore, of considerable interest to develop
therapies that can promote or restore remyelination, with current
research approaches including stem cell therapeutics, biomaterial
construct implants and nanoparticle or extracellular vesicle treatment
formulations, among others [4]–[7].

The drug Lysolecithin (LPC) has been widely used for years to
experimentally induce demyelination in neurons from both the central
and peripheral nervous systems (PNS). Many studies have taken advan-
tage of LPC to help characterise experimental models in terms of its
morphology by light and electron microscopy, electrophysiology and
biochemistry. The various uses and validity of organotypic cerebellar
slice cultures in studying demyelinating disease have been thoroughly
reviewed by Doussau and colleagues [9], identifying the culture system
as the easiest way to replicate the various stages of myelination,
demyelination and remyelination that are of interest outside of in
vivo models. These cultures faithfully retain the cytoarchitecture and
neuronal networks of the cerebellar cortex in vitro for weeks to
months, allowing for long-term investigations of novel therapeutics and
sufficient recovery time following a demyelinating insult to observe
remyelination. Furthermore, the neurons in these slice cultures retain
electrophysiological characteristics, such as Purkinje cells forming
new synapses with targets upon stimulation [10]. Crucially to study
remyelination, cells at all stages of the oligodendroglia lineage are
retained in the organotypic cerebellar slice culture [11].

Turning to LPC specifically, this was first demonstrated to induce
demyelination in organotypic cerebellar slice cultures by Birgbauer
and colleagues in 2004, as observed by immunostaining for myelin
basic protein (MBP), myelin oligodendrocyte glycoprotein (MOG),
and 2’, 3’-cyclic nucleotide 3’-phosphodiesterase (CNPase), followed
by recovery and subsequent remyelination [12]. This approach to
inducing demyelination has been used in several studies to date,
including a demonstration that the MS therapy fingolimod can promote
remyelination [13], validation of an immune-mediated technique for
inducing demyelination [14] and characterization of the critical pro-
remyelination properties of microglia [8], [15]. Furthermore, focal
injections of LPC to the spinal cord (Fig. 1) are a frequently-used in
vivo model of demyelination [16], thus using an LPC-based in vitro
model is attractive to screen potential treatments before commencing
in vivo studies.

The findings on the demyelination and remyelination processes
observed with the help of the wet-lab experiments will allow the
construction of a more refined and accurate computational simulation
model and, possibly, shine light on the way neurons encode infor-
mation. In the last few years, there has been an increasing number
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Fig. 1. (A) Schematic of organotypic brainstem and cerebellum slice culture model set-up. Drawings of mouse brains borrowed from Miron et al [8].
(B) Average myelination indices of slices in myelination, demyelination and remyelination conditions. Each datapoint represents the index of a single
slice. ** = p < 0.01, **** = p < 0.0001, one-way ANOVA with post-hoc Sidak’s multiple comparisons test. Graph generated in GraphPad Prism.
(C) Representative images of myelination, demyelination and remyelination staining under confocal microscopy, composite images. Blue = DAPI,
Green = NFH, Red = MBP.

of scientists that started to look at alternative coding techniques,
some of them imposing profound implications on the field of neural
computation [17]. Firing rate coding [17], [18] is a technique where
the rate with which spikes are being fired is proportional to the
strength of the stimuli. Several other coding techniques have also
been proposed as alternatives such as rank order coding or sparse
coding, where these techniques take into account that real neurons use
spikes that are followed by refractory periods which should play a role
in information encoding. One of the simplest techniques proposed is
to just count the number of action potentials fired during a particular
period, and this is referred to as count coding [17]. With this coding
technique, the maximum amount of information transmitted by N
neurons is log2(N+1) bits. Another alternative method is to check for
the presence of an action potential in a specific time window. In this
technique, the presence of a firing will be considered a bit “1” and its
absence a bit “0”, and this is referred to as binary coding [17], [19].
For a binary code, the maximum amount of information transmitted
by N neurons is equal to log2(2N ) bits. More complex encoding
techniques have also been proposed. Such approaches use the precise
time of each spike on each input to increase the maximum amount
of information transmitted by a group of neurons. In this case, the
maximum amount of information transmitted by N neurons in a time
window of t ms, where the spikes can be timed with a precision of 1
ms, is N · log2(t) bits. Thus, this encoding technique is known as
temporal coding or timing coding [17], [20].

This model should be able to play a significant role in the analysis
of the impact that demyelination and remyelination will have on the
neuronal signalling communication process and should also be used to
add a new analysis tool for wet-lab experimentalists without the need
for specialised equipment. This hybrid computational simulation and
experimental model has the potential to improve both sides of the study
and bring together scientists and researchers from different disciplines
by unifying their findings and validating their data for a more reliable
analysis of the demyelination and remyelination processes on the

molecular aspect of neuronal communications.
The objective of this paper is to computationally validate the data

collected from wet-lab experiments on LPC-induced demyelination
and to analyse its impact on the communication once the demyelinated
neuron is partially remyelinated. The contributions of this paper are:

• A novel hybrid wet-lab-computational model: We describe the
construction of a wet-lab dataset of myelination under conditions
of LPC-induced demyelination and subsequent remyelination,
alongside undisturbed myelination controls, suitable for input to
a computational model. By utilising a method of analysis from
neuronal molecular communications, we use this hybrid model
to understand the signal propagation behaviour as they propagate
through the axonal pathway.

• Modelling of the spiking rate for myelin-deficient neurons:
As proposed in the literature, spike firing usually follows a
Poisson process [21], [22]. The rate and pattern of firing can
defer between different demyelination intensities leading to the
modelling of their respective behaviour into known distributions.

• Multi-perspective theoretical analysis of LPC-induced de-
myelination: Communication metrics (e.g., channel capacity,
attenuation and time delay) analysis are presented and discussed
on the effects of demyelination from three different perspectives,
(1) single neuron and the signal propagation through axonal
compartments, (2) bipartite synapse and the effects on the
excitatory post-synaptic potential and, (3) small neuronal network
of 27 cells is analysed to determine the network communication
when a neuron starts to demyelinate.

The remainder of this paper is as follows in Section II we present
the methodologies applied for both the wet-lab experiments and the
computational simulations for analysis and validation of data from
LPC-induced demyelination. In Section III, we present and discuss
our results from (1) single neuron, (2) bipartite synapse and (3) small
neuronal network perspectives and, finally, in Section IV, we conclude
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this analysis and discuss potential future works.

II. MATERIALS AND METHODS

A. LPC-induced Demyelination

1) Animals and Tissue Preparation: All experiments were
conducted in accordance with EU and Health Products Regulatory
Authority guidelines. A breeding colony of wild-type C57BL/6J
mice was maintained in the Biomedical Research Facility in the
Royal College of Surgeons in Ireland using mice obtained from
The Jackson Laboratory. Organotypic brain slice cultures of the
brainstem and cerebellum were established to examine demyelination
and remyelination ex vivo, based on the protocol described by Doussau
and colleagues [9]. Briefly, the cerebellum and brainstem were cut
into slices 300 µm thick along the sagittal axis using a McIlwain
Tissue Chopper. Slices were separated in slice culture media (46.55%
Minimum Essential Medium (MEM), 25% heat-inactivated horse
serum, 25% Earl’s balanced salt solution, 1% glutamine, 1% 100
U/mL P/S, 1.45% glucose 45, final concentration 6.5 mg/mL) and
transferred onto 0.4 µm Millipore mesh membrane inserts inside
6-well plates containing 1 mL of slice culture media. Typically 6-7
slices were obtained per brain, and the slices from each brain were
distributed across separate wells, with 6 slices per culture well. Slices
were then cultured at 37 °C, 5% oxygen, with fresh slice culture
media, exchanged every 2-3 days, for a total of 14 days in vitro
(d.i.v.).

2) Demyelination and Remyelination: To induce demyelination,
the drug lysolecithin (LPC) was applied to 14 d.i.v. cultures at a
concentration of 0.5 mg/mL for 16 hours. LPC was then withdrawn,
the cultures were washed once in slice culture media before being
transferred and maintained in fresh media for a 24-hour recovery
period. Slices were then allowed to remyelinate for a further 14 days
in vitro, with media changes every 2-3 days as before.

3) Immunofluorescence and Fluorescent Microscopy: Im-
munofluorescent staining and fluorescent microscopy were used
to evaluate the extent of myelination in organotypic brain slice
cultures. Cultures were washed once in PBS before fixation with
4% paraformaldehyde solution (PFA) for 45 minutes, at which point
PFA was withdrawn and cultures ready for staining. Cultures were
first blocked for 3 hours using a 2% horse serum, 10% goat serum,
1% BSA, 0.25% Triton-X-100, 1 mM HEPES solution in PBS at room
temperature. The mesh insert membranes were then cut and slices
transferred to 24-well plates for staining. Primary antibodies for anti-
NFH (1:2000) and anti-MBP (1:600) were then applied in the block
solution, 400 µL/well for 2 days at 4 °C. Slices were then washed with
shaking three times at room temperature in PBS-0.01% Triton-X-100,
1 hour per wash, before applying AlexaFluor secondary antibodies
- 1:500 anti-chicken AlexaFluor 488, 1:500 anti-rat AlexaFluor 568,
in block solution, 400 µL/well overnight at 4°C. Slices were then
counterstained with DAPI –1:30,000 of stock in PBS, 500 µL per
well – for ten minutes before washing three times in PBS-0.01%
Triton-X-100 as before. Slices were mounted with ProLong Gold and
were labelled with randomly generated 6-digit numbers corresponding
to treatment or control conditions, to introduce blinding during image
acquisition.

Slices were imaged using a Zeiss 710 confocal microscope at 40x
magnification. Three representative image stacks were acquired per
slice, using Z-stack imaging at 0.5 µm intervals across 10 µm. Images
were then analysed in ImageJ for co-localisation of MBP to NFH
(neurofilament protein H) to assess the extent of myelination in each
slice. A myelination index (ιmy), ranging from 0 to 1, was calculated
for each z-stack by dividing the amount of co-localisation by the total
amount of NFH, and averages for each slice calculated by pooling

Fig. 2. Comparison of staining quality at the top (slice 16 of 21, 2.5µm
below surface) and bottom (slice 5 of 21, 8µm below surface) of image
stacks under confocal microscopy. Composite images, Blue = DAPI,
Green = NFH, Red = MBP.

myelination indices from representative images together. The indices
obtained are, therefore, a measure of myelin sheaths overlaid on axon
fibres, relative to total axon density. A graphical illustration of tissue
analysis and slice culture model set-up are shown in Fig. 1, with a
description of the culture set-up, the timeline for introducing LPC
for demyelination at day 14, and the stop point for remyelination
in Fig. 1(a). Taking the average myelination index for each slice
we confirm that introduction of LPC for 16h produced a significant
decrease in myelination, allowing a 14-day recovery period following
LPC withdrawal, we observed a significant restoration of myelin
sheaths in the remyelination conditions as measured by the myelination
index relative to demyelination slices, Fig. 1(b). Representative images
for each condition are also shown for illustrative purposes in Fig. 1(c).
As can be seen in the “Myelination” image, prior to application of
LPC clear (red) myelin sheaths can be observed overlaid on (green)
axons. Following LPC application, substantially less myelin stain
can be observed in the “Demyelination” image, and what myelin is
present does not form clear sheath structures, most likely debris. In
the “remyelination” image, taken 14 days following LPC withdrawal,
myelin in sheath structures can be observed again laid over axons,
though perhaps less pronounced or thinner than the myelination
condition. This is an expected characteristic of repaired myelin sheaths.
It is therefore clear that the myelination index measurement is reflective
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Fig. 3. Illustration of an axonal pathway with a (A) detail of a Node
of Ranvier and two internodes, respectively, (B) Hodgkin-Huxley circuit
model with parameter detailed description provided in Section II-B; the
parameters Ci and gil and their subsequent myelinated compartments
are described by equations (14) and (15), respectively.

of clear differences in myelination of axons. For that reason, for
computational analysis, indices were restricted to the top 3.5µm
of each 10µm stack captured across slices and conditions which,
visually, it is clear that NFH staining was of superior quality in the
regions of the slice closer to the surface, as seen in Fig. 2.

B. Computational Model for Axonal Demyelination

The axon under analysis in this work is modelled according to
the Hodgkin-Huxley formalism [23] with modifications proposed by
Quandt and Davis [24], as depicted in Fig. 3, where the parameters
are described in Table I.

When an external stimulus, Iext, is applied, it triggers either the
activation or inactivation of the ionic channels that allow the exchange
of ions that result in depolarisation (or hyperpolarize when it is
inhibited) of the membrane of the cell. These dynamic changes in the
voltage and current of each ion diffussion through the membrane are
modelled as

C
dV
dt

= −Il − INa − IK − Isyn + Iext, (1)

where V is the membrane potential, Ix are the ionic currents, where
x represents either a specific ion (Na, K) or the leak channel (l).
Those currents are represented as

Il = gl(V − El), (2)

INa = gNam
3h(V − ENa), (3)

IK = gKn
4(V − EK), (4)

TABLE I
SUMMARY OF ELEMENTS AND PARAMETERS FOR MODELLING AND

SIMULATION.

Element Value Unit

Membrane capacitance (Cm) 1 µF/cm2

Axon radius (δa) 5 µm
Node length (Ln) 4 µm
Internodal distance (di) 2 mm
Internal resistance (ra) 100 Ω·cm
Myelin sheath (w) 200 wraps
Sodium reversal potential (ENa) 53 mV
Potassium reversal potential (EK ) -74 mV
Leak reversal potential (El) -60 mV
Sodium conductance density (GNa) 1200 mS/cm2

Potassium conductance density (GK ) 90 mS/cm2

Leak conductance density (Gl) 20 mS/cm2

Internodal membrane conductance (gi) 0.3 mS/cm2

Temperature (T ) 37 °C
Time step (dt) 0.25 µs
Q10 3.0 -

where m and h are the activation and inactivation variables of the
sodium (Na) channel, respectively, and n is the activation variable
of the potassium (K) channel. Following the approach proposed by
Hodgkin and Huxley [23], those variables are represented below as x
and their dynamics are described as

dx
dt

= αx(V )(1− x)− βx(V )x, (5)

in which the values of the rate constants αi and βi for the i-th ionic
channel can be defined as

αm =
0.1(V + 40)

1 + e−(V+40)/10
, (6)

βm = 4e−(V+65)/20, (7)

αh = 0.07e−(V+65)/20, (8)

βh =
1

1 + e−(V+35)/10
, (9)

αn =
0.01(V + 55)

1− e−(V+55)/10
, (10)

βn = 0.125e−(V+65)/80. (11)

We also integrated a process into the model for the synaptic inputs
from pre-synaptic cells in which the ionic channels that are activated
will release neurotransmitters that are diffused into the synaptic cleft
towards neuroreceptors at the post-synaptic cell. This relationship is
represented as

Isyn = gsyn(V − Esyn), (12)

where the synaptic conductance, gsyn, and the synaptic reversal
potential, Esyn, are used to describe many different types of synapses,
and the latter may assume different values according to the types of
neuroreceptors. The four major transmitters used for communication
in the nervous systems are listed in Table II [25], [26].

The gsyn can be described as a superposition of exponentials and
is represented as
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TABLE II
Esyn FOR DIFFERENT RECEPTORS.

Neurotransmitter Neuroreceptor Esyn (mV)
Glutamate Non-NMDA 0
Glutamate NMDA 0

GABA GABAA −70
GABA GABAB −100
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(a) Action potential propagation on an axon fully myelinated.
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(b) Action potential propagation on an axon with half of its normal myelination
levels.

Fig. 4. Parallel for action potential propagations between a fully
myelinated and a partially (50%) demyelinated axon.

gsyn =
∑

f

ḡsyn e−(t−t
(f))/τ H(t− t(f)) , (13)

where τ is a time constant, ḡsyn is the peak synaptic conductance,
t(f) is the arrival time of a pre-synaptic action potential and H(·) is
the Heaviside step function [25]. As we have investigated in [27], the
membrane potential that reaches the pre-synaptic terminals can affect
the probability of releasing neurotransmitters. Consequently, anything
that would affect this potential could also indirectly lead to changes
in the release of neurotransmitters. In other words, it is not only
the synaptic current (Equation (12), but also all other ionic currents
that can influence the release of neurotransmitters and consequently
compromise the integrity of the signal being propagated down the
neuronal network.

The modifications, proposed by Quandt and Davis [24], on the
original Hodgkin-Huxley model is to incorporate the dynamics of
myelination and understand the signal propagation per compartment,
by including the capacitance of the internode (Ci), which is repre-
sented as

Ci =
2π δa di Cm
ιmyw + 1

, (14)

and the assumption that the internode have a specific leak conductance
(gil ), which is represented as

gil =
2π δa di gi
ιmyw + 1

, (15)

where ιmy is the myelination index described in Section II-A.3. The
myelinated compartments (also called internode compartments) are
modelled as not having ionic channels. This is mainly because as the

myelin sheath provides insulation, it also blocks the ionic channels in
the axonal membrane, not allowing the free movement and exchange
of ions between intra- and extra-cellular mediums. Furthermore, both
the Ci and gil values are heavily influenced by the number of myelin
wraps, w, as shown in equations (14) and (15) and, as w decreases
due to demyelination, it negatively impacts the speed and potential
responses concerning the propagation of the signal.

An axon with six internodes and seven nodes of Ranvier was
built as illustrated in Fig. 3. The simulations were conducted using
the NEURON simulation environment with Python [28], [29]. Each
point of stimulation was set at 200 spikes per second following a
Poisson process [22] unless otherwise stated. Five simulations were
conducted for each value of ιmy starting at full myelination (100%)
and decreasing at 12.5% intervals until it reaches 12.5%, hereafter
considered as full demyelination (see Section II-A). Each spike is
represented as a bit ‘1’ and its absence is represented as a bit ‘0’ in a
specific time slot. In this work, the time slot for sampling the neuronal
binary information is 5 ms. This is short enough to detect less than
a single spike and account for its refractory periods. The cells were
connected following a standard procedure with the NetCon object that
defines a synaptic connection. We are not using any morphological-
type-related connection probability as the neurons are modelled in a
generic structure and behaviour. The network arrangement does not
follow any structure in particular, e.g. cortical layers, instead it was
arranged in a cubic shape (more details in Section III-D) where there
was a single synapse per connection and, a single connection where
needed.

III. RESULTS AND DISCUSSION

A. Demyelination and Remyelination of Slice Cultures
Following the 16-hour treatment with 0.5 mg/mL LPC, we observed

a significant reduction in the myelination of neurons as determined by
the average myelination index of slices relative to untreated controls
(p < 0.01, one-way ANOVA and Sidak’s multiple comparisons
posthoc test). LPC-induced demyelination was observed to be of
a similar magnitude in our hands as reported by several other
groups [13], [14], [30]. Following 14 days of recovery post-LPC-
induced demyelination in brain slice media, remyelination was
observed that was significantly greater than the demyelination time-
point as determined by the myelination index (p < 0.0001, one-way
ANOVA and Sidak’s multiple comparisons posthoc test).

The average myelination index of each slice was used to determine
the success and overall extend of LPC-induced demyelination and
remyelination; however, individual myelination indices of each
captured image were also recorded as part of the analysis process.

B. Compartmental Analysis
To understand the dynamics of action potential propagation in the

axonal pathway, our modelling process should account for the effects
of myelinated and non-myelinated sections of the axon. For that reason,
we are using the multi-compartmental modelling framework [31] to
help put together a detailed representation of the axon that would
provide us with enough information regarding the electrical behaviour
of the neuronal membrane.

In this work, we have modelled the axon with Hodgkin-Huxley
compartments for the nodes of Ranvier and the myelinated internode
compartments. As indicated in Section II-B, even though both use
the same framework, the internodes are modelled slightly differently
to account for the myelin sheaths. Then, we decided to start our
analysis on the neuron itself, in other words, on the behaviour of
the membrane per compartment (Fig. 4). The model used follows
the description from Section II-B aiming to understand how partially
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Fig. 5. Relative mean shift in relation to a fully myelinated neuron.

myelinated neurons, i.e. under either demyelination or remyelination
conditions, affects the propagation of action potentials per neuronal
compartment. Fig. 4 shows how a neuron with half of its normal
myelin, Fig. 4(b), compared to a fully myelinated neuron shown in
Fig. 4(a). The results depicts not only a delay for the action potential
to reach its peak in all compartments but also shows how damages to
the myelin sheath can affect the value of membrane potential reached.
For that reason, we decided to numerically evaluate by how much
the shift in peak time and amplitude changes as the demyelination
worsens and, analogously, the changes due to remyelination processes.

1) Relative Mean Shift: Visually, we first noticed subtle shifts
in amplitude (peak potential reached by the membrane) and in time
(spikes were taking longer to reach their peak values). We then decided
to quantify these shifts, both in amplitude and in time, on average,
by proposing a metric that we called relative mean shift. For the
analysis on time shift, we consider the points in time where each
spike peaked at the input as T kin, where k = {1, 2, 3, ...,K} identifies
the order of each spike and, T kout as the peak times at the output.
Thus, we define the relative mean time shift, δt (ms), as

δt =
1

K

K∑

k=1

(T kout − T kin). (16)

Analogously, we can define the relative mean amplitude shift, δv
(mV), with V kin and V kout as the peak amplitudes of spike k at the
input and output, respectively.

As illustrated in Fig. 5, the difference in the average membrane
potential in relation to a full myelinated neuron is considerably
damaging to the signal propagation through the axonal pathway. At
12.5% myelination, the difference is almost 60 mV shown in Fig. 5(a)
and this is enough to not even consider the signal travelling down the
axon as a spike. The degradation in the membrane potential is not
linear, where its logarithmic-shaped curve illustrates a much steeper

Fig. 6. Bipartite synapse with demyelinated pre-synaptic neuron.
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Fig. 7. Capacity, C(X;Y) and mean mutual information, I(X;Y), for peer-
to-peer analysis of a pre-synaptic demyelinated neuron.

degeneration for the lower half of the indices when compared to
the upper half as the mean shift in amplitude starts to plateau as it
approaches full myelination. Analogous to the effects on membrane
potential, Fig. 5(b) shows how the peak times of the action potentials
are delayed as ιmy decreases. The negative-exponentially-shaped
curve depicts a smoother increase in the mean time shift for higher
indices. Both results in Fig. 5 match findings in Cohen et al [32], where
they identified longer onset latencies and lower peak amplitudes in
the conduction of action potentials along myelinated axons on models
of L5 pyramidal cells.

C. Bipartite Synapse Analysis

From the perspective of information and communication theory, the
neuron can be seen as peers in the nervous system characterising a peer-
to-peer communication system [33]. Even though the bit transmission
may be affected by the refractory period of a recently fired action
potential, depending on the intensity of the stimuli, new bits may still
be transmitted during relative refractory periods. Furthermore, if the
post-synaptic neuron does not manage to evoke a subsequent action
potential, there will be no waiting queue [26] which characterises the
channel as memoryless. This means that any spike not propagated,
because the post-synaptic neuron is unable to fire at the time the
pre-synaptic stimuli arrives, will be lost. A pair of neurons, one acting
as the transmitter, known as pre-synaptic neuron and, the other acting
as the receiver, called a post-synaptic neuron, form a bipartite synapse
as shown in Fig. 6. A synaptic connection between only two neurons
is considered a single input single output (SISO) communication
channel [22] and can be evaluated as such using well-known metrics
from information and communication theory such as capacity [34],
[35].

1) Channel Capacity: Shannon’s entropy of a discrete random
variable x and probability mass function p(x) can be used in biological
systems to represent information as bits in several processes and is
defined as

PUBLICATION 4: ANALYSIS OF LPC-INDUCED DEMYELINATION ON NEURONAL
MOLECULAR COMMUNICATIONS

102



AUTHOR et al.: PREPARATION OF BRIEF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 7

0 100 200 300 400 500
Spiking rate (spikes/s)

0.0

0.004

0.008

0.012

0.016

0.02

0.024

0.028

0.032

No
rm

al
ize

d 
Fr

eq
ue

nc
y

genlogistic
tukeylambda
norminvgauss
25%
50%
100%

(a) Spiking rate distributions for different ιmy .
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Fig. 8. Distributions for spiking rate and interspike intervals revealing a
shift in peak and widening of the curve for different myelination indices.

H(X) = −
P∑

x∈X
(x) log2 p(x), (17)

where X = {x0, x1}.
Additionally, the definition of conditional entropy is based on the

conditional and joint distribution of x and y:

H(X|Y ) = −
∑

x∈X

∑

y∈Y
p(x, y) log2 p(x|y), (18)

where Y = {y0, y1}.
All the remaining probabilities are defined as follows:

p(x) = p(x = x0) + p(x = x1), (19)

p(y) = [p(y = y0) + p(y = y1)] p(y|x), (20)

p(y = y0|x = x0) = 1− p(y = y1|x = x0), (21)

p(y = y0|x = x1) = 1− p(y = y1|x = x1). (22)

In other words, we could characterise the destructive effects of
demyelination on the propagation of the signal as the probability of
receiving a bit ‘0’, i.e. no spike, given that a bit ‘1’ was sent at the
input, p(y = y0|x = x1) in Eq. (22). Moreover, as the remyelination
takes place, there is an increase on the probability of receiving a bit
‘1’, given that a bit ‘1’, i.e. spike, was sent, p(y = y1|x = x1) in
Eq. (22). This shows how the channel capacity can be affected as the
conditional probabilities for receiving a specific bit changes with the
degeneration and, eventually the partial regeneration of the myelin
sheath.

The mutual information between two variables indicates that the
input can be construed as a measure of the “noise” in the channel
given the output, and is calculated as
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Fig. 9. Mean and standard deviation for spiking rate and interspike
intervals for the analysis of a network of 27 neurons.

I(X;Y ) = H(X)−H(X|Y )

= −
∑

x∈X

∑

y∈Y
p(x)p(y|x) log2

p(y|x)

p(y)
, (23)

and the maximum average mutual information in any single use of
the channel, known as capacity, which is represented as

C(X;Y ) = maxp(x)I(X;Y ). (24)

From our simulations, both the capacity and mean mutual information
are shown in Fig. 7.

As shown in Fig. 7, there are a few fluctuations which we believe
to be due to the randomness of the spikes at the input of a myelinated
axon. The mutual information increases in a way that resembles a
logarithmic curve, similar to the mean shift in amplitude from Fig. 5(a)
and corroborates findings from Veletić et al [33], [36]. The authors
showed a similar growth of channel capacity (bits), and information
rate (bits per second) which is proportional to capacity values for
bipartite synaptic connections.

D. Network Analysis

When part of a larger network, neurons can receive stimuli from
several other neurons and pass this information down to many other
neurons as well characterising a multiple-input and multiple-output
(MIMO) communication channel [37]. For our network analysis, we
arranged 27 neurons in a 3× 3× 3 cubic structure, with vertical and
horizontal connections, but not diagonals; this was a design choice to
avoid too much noise at higher spike firing frequencies and still takes
advantage of a good connectivity scheme. As with any stochastic
system, it is not ideal to force a system’s behaviour into a deterministic
model, where we need to account for inherent randomness. In this
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Fig. 10. Raster plots for different myelination indices showing how capacity is degrated and then regenerated as demyelination and remyelination
take place over time.

scenario, the system is our network and as the demyelination gets
worse, the spike-firing pattern and rate is negatively compromised.
In this scenario, all 27 neurons are demyelinated at the same time
and the same proportion, to mimic the process of demyelination for
the calculation of ιmy , where all neurons in the field of view are
demyelinated together.

1) Distribution Fitting: Several works in the literature have
hypothesised that neurons follow a Poisson process when firing
individually, but this may not be the case depending on the connectivity,
stimulus and neuronal structure [38]. To assess these conditions,
we turn to distribution fitting to help us understand how those
differences affect the network as a whole and to reproduce its
behaviour. This modelling technique is most commonly done by
applying the Kolmogorov–Smirnov (KS) test for goodness of fit [39].
Once the best fit is found for the data, both the histogram of the real
data and the probability distribution function, fx, of the best-fitted
distribution are plotted together as shown in Fig 8.

Full myelination in Fig. 8(a) shows similarities to the findings
by Platkiewicz and Brette [40] on the threshold for spike initiation
which suggests that our results for different levels of demyelination
can be a good representation for the validity of in vivo and in
vitro experiments. Furthermore, we have also found strong similarity
between our results in Fig. 8(b) and the results presented by Levine
and Shefner [41]. Visually, the highly skewed distribution of their
data resembles our findings for a Noncentral F distribution (n.c.f.)
at full myelination. As for the spiking rate, these results suggest our
models offer good approximations to provide complementary analysis
tool of understanding internal signal propagation properties of the
neurons under de/remyelination.

2) Spiking Rate and Interspike Intervals (ISI): One of the
first things to indicate changes have happened in the neuronal
communication channel is the spiking rate and the ISI. The spiking
rate changes with the intensity of the stimulus as a way of encoding
and modulating the stimulus with different firing frequencies. However,
as neurons inside a network start to attenuate the signal or not pass
it along altogether, it affects the rate with which the information is
transferred within the network.

To understand what happens to the overall spiking rate inside a
network, we decided to calculate its mean and standard deviation as
the myelination index changed. As aforementioned in Section II, the
myelination index was calculated for several neurons within the field
of view for each cortical slice. For that reason, we chose to vary the
index and see its effect on the entire network as depicted in Fig. 9.

As expected, Fig. 9(a) shows an increase in the spike firing rate
as the myelination index increases. From myelination index of 0.375
onwards it is clear how it increases as a logarithmic-shaped curve,
similar to the relative mean amplitude shift, δv , from Fig. 5(a).

However, there is barely any difference for the three lowest index
points. This is an interesting finding from the point of view of
communication performance, where myelination index ιmy lower
than 40% results in information that may be degraded to their worst
levels and this change does not differ all the way to the level of 15%.
In Fig. 10, it is possible to follow the visual decrease in spiking activity
as demyelination progresses up to a point when the remyelination
takes over and the restoration of several axonal pathways returns to
propagate the action potentials. As the spiking rate is visually affected,
so is the channel capacity which follows a similar behaviour as the
one depicted in Section III-C, Fig. 7.

Researchers have already shown that action potentials are broadened
and the conduction velocity supported by the saltatory nature of the
conduction of neuronal potential is prone to failure as the myelin
sheath gets more and more damaged [27], [32], [42]. All of the
results available in the literature help support our claim that the
frequency-dependent spiking activity is highly correlated to the level
of demyelination which eventually plateau in both ends, as shown
in Fig. 9, where values of ιmy less than 0.4 (lower index band) and
greater than 0.7 (upper index band) show very subtle variations in
comparison to values between 0.4 and 0.7 (middle index band).

IV. CONCLUSION

In this work, we have proposed a new hybrid computational
simulation and experimental model to analyze signal propagation along
neurons as they undergo demyelination and remyelination. We have
analysed the effects of demyelination for three different levels and this
includes (1) a single compartment within an axon, (2) bipartite synapse
to understand how signal propagation changes as they propagate to
the post-synaptic neuron and, (3) the impact of de/remyelination on
a neuronal network. Our computational simulations were based on
data from wet-lab experiments that used LPC to induce demyelination
in slices of the cortical regions of the brain. The results from our
computational simulations validated other findings from the literature
that suggested the neuronal communication is indeed affected by
demyelination. This analysis is based on developing a computational
simulation model proposed by Hodgkin-Huxley and integrating it
with signalling behaviour that is affected by the changes in the
myelin sheaths. Our correlated analysis to the results from literature
includes the changes in the amplitude and mean-shift, as well as
capacity of information bits propagated between neurons, and the
firing spike rate within a network of neurons as they undergo
demyelination and remyelination. These approaches could pave the
way for novel analytical techniques of neurons that are affected by
diseases and their impact on their communication behaviour, by linking
the results from wet-lab experiments that can feed into computational
simulation models. This in turn can minimize the need for specialized
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experimental equipment that is needed to investigate changes in the
communication behaviour, where the simulation model can provide
very fine-grain signalling properties down to the compartment level,
as well as between neurons, all the way up to the scale of the network.
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ABSTRACT
A major challenge in neuronal molecular communications lies in
modulating signals through the neuronal network of the cortex
that will minimize interference with the natural signalling. In this
paper, we propose the use of Electroencephalogram (EEG) signals
as a sensing mechanism to determine spiking interval gaps that can
be used to stimulate artificial data transfer in the cortical micro-
column.
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1 INTRODUCTION
Recent studies in molecular communication have investigated the
maximum capacity of sending information through neurons. A
question remains as to how stimulation of neurons to transmit
information can be achieved while minimizing interference with
natural signalling process. In particular when miniature nanoscale
implantables such Wireless Optogenetics Nanonetworks (WiOptND)
are used to stimulate the neurons. One possible approach is to
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Figure 1: System Architecture.

integrate a sensing system within the cortex that will sense the
neural activities, however, this leads to increased complexity.

The objective of this paper is to present a new form of Brain-
Computer Interface (BCI), where the EEG measurements are used
to determine the activity of the cortex, which in turn can provide
new forms of neuronal molecular communication modulation. The
overall proposed system is illustrated in Figure 1. There is a re-
lationship that exists between the neuron firing patterns and the
EEG signalling, as shown in Figure 2. A neuron can slow down or
speed up its firing rate depending on tasks being performed by the
subject. Therefore, based on this, our aim is to transmit information
through the low spiking patterns of the neurons, and in particular
during the gaps.

2 CORTICAL COLUMN ARTIFICIAL DATA
TRANSFER

TheMicro-column activity (MCA) depends on parameters regarding
its structure such as number, type and configuration of the cells and
topology of the column. The EEG signal is measured passed through
a band-pass filter for both the delta and gamma frequency bands
withwhich the power of the gamma signal and the phase of the delta
signal are determined. The multi-unit activity is then predicted by
themodel proposed by [4] and represented as S =Wγωγ +Θ∆ω∆+ε,
where ωγ ,∆ are the weights of power and phase,Wγ and Θ∆ are
oscillatory power and phase and ε is a constant error term. Further
details regarding the statistical estimation of the weights and the
use of only gamma and delta signals can be found in [4].

The probability that k spikes are fired during a giving time inter-
val in which S spikes are expected, is given by P(k ∈ S) = Ske−S /k!.
Therefore, the probability of communication gap, Pдap , would be
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Figure 2: Relationship between the (a) normalised evoked EEG and
the (b) spike raster plot data from visual stimuli.

equal to the probability of k = 0 spikes. Thus, Pдap = p(x = 0) =
e−S . Time intervals, with duration τ , are discrete time slots in which
a single bit is transmitted, and is defined as τ = T /Nb , where T
is the total time of observation and Nb is the total number of bits.
The information rate, R, which is used to analyse the ability of a
sender to communicate multiple bits of information to a receiver, is
the maximum average amount of information transferred per unit
time and is given as R = C(X ;Y )/τ , whereC(X ;Y ) is the maximum
average mutual information.

3 RESULTS AND DISCUSSION
In this section, the results obtained from simulations performed
using NEURON and Python are presented [1]. The cells models
are arranged according to their respective layers and connection
probabilities based in [2]. Each column is arranged with one cell per
layer and a fractional noise parameter is set to zero so it would be
possible to evaluate the interference caused by the free spreading
of spikes fired in both single- and multi-unit arrangements. The
EEG readings of neuronal activity are based on recordings from a
10-20 electrode system [3]. The data is analysed through a signal
processing algorithm to detect gaps that can be used to modulate
signals. Based on this, we stimulate the neurons to transmit artificial
data within these gaps.

Figure 3(a) depicts how a larger number of transmitted bits along
with a lower Pдap implies more interference across the column,
considering bit sequences randomly generated in relation to Pдap ,
which represents a decrease in the channel capacity between Tx
(L23) and Rx (L6). This decay follows the shape of an exponen-
tial function getting very close to zero when it approaches 100
transmitted bits.

Figure 3(b), on the left side, shows that neighbouring columns,
simulated for 50 transmitted bits and a Pдap = 0.5, resulting in
more interference in the channel which leads to a decrease, by a
factor of approximately 2, in the capacity and information rate. The
right side illustrates a input probability collected from real EEG
readings.

The columnar arrangements were kept the same for all simula-
tions, but any change in their position, connection probability or
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Figure 3: Analysis of the channel regarding the relationship be-
tween the (a) capacity and the number of transmitted bits in a
1000 ms simulation and the (b) influence of the number of cortical
columns in the information rate (left) and the input probability of
the system (right).

the number of dendrites, represents a cascade of events that would
lead to performance changes.

4 CONCLUSIONS
Our proposed artificial data transfer system results demonstrates
how neighbouring cells represent a significant level of interference
even if only one cell is firing spikes. At the same time, the correla-
tion between the EEG signals and spiking activity may vary across
situations requiring a careful approach for interpreting the signals.
The proposed work can lead to a new form of BCI for neural com-
munication systems and pave the way towards new applications
and a more reliable process to enhance the capabilities of the brain
by inserting artificial data without interfering with the natural flow
of neuronal information.
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Abstract—The field of Neuroengineering aims to investigate
ways to proposed synthetic and controllable Boolean computing
inside the brain using neuronal cells based on the existing
neuronal computation abilities of the Brain. In this work, we
propose the design of AND and OR logic gates using a mul-
ticellular Boolean logic operation by engineering the molecular
communications of neurons and we evaluate their performance
when passing data along as isolated units. The results show
higher accuracy values of gate operation for mid-level inter-spike
intervals when stimulated with spike trains revealing the role of
the frequency of firing and how this impacts on neuronal logic
gating.

Index Terms—molecular communication, neuronal network,
logic gates, Boolean algebra

I. INTRODUCTION

Recent studies have investigated the computation abilities of
the brain following findings that its internal structure might be
composed of reliable Boolean building blocks similar to the
ones found at the core of today’s transistors [1]. A question
remains as to how synthetic and controllable engineering of
neuronal logic gates can impact on future precision medicine
technologies for neurodegenerative diseases.

Neuronal cells send and receive information through the
firing of action potentials (AP), i.e. spikes, and depending
on the task that is being performed by the brain, a neuron
can speed up or slow down its firing rate. This exchange
of information through electrochemical signalling between
neurons is known as neuro-spike communication and is one
of the models of molecular communication proposed in the
literature [2]. In this work, we propose the design of logic gates
using a multicellular Boolean logic operation by engineering
the molecular communications of neurons, based on the neuro-
spike signal propagation.

Our objective is to present an analysis from the perspective
of molecular communications on the logical Boolean opera-
tions of neuronal cells by controlling information processing at
a tissue level, for potential reconfiguration of neural circuits or
the development of non-surgical neural interfaces, in relation

This work is partially supported by the Science Foundation Ireland (SFI)
CONNECT Project under grant no. 1R/RC/2077.
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O

(c) Neuronal logic gate. (d) Truth table.

Fig. 1. Logic gates and their truth tables.

to stimulation frequencies of the input neurons, as illustrated
in Fig. 1. The variations in the frequency of stimulation
may represent interference in the neuro-spike propagation that
could cause loss of information. The performance of the gates
is measured in terms of accuracy between the expected output,
given with known inputs, and the actual output.

II. NEURONAL DIGITAL LOGIC GATES

The neuron spiking threshold value not only controls the
firing rate of a neuron but also plays a role in how it processes
information. A neuron follows the all-or-none principle to
fire a spike. Stereotypically, an AP is initiated only when the
membrane potential, V (·), in the cell reaches a certain level,
i.e. threshold, th. According to Platkiewicz and Brette [3], the
threshold in brain cells depends on several parameters such as
stimulus (x), type of cells (α), synaptic conductances (gSyn)
and properties of ionic channels (E). We use this phenomenon
of the neurons to design logic gates and it is defined as

AP =

{
1, if V (x, α, gSyn,E) > th (1)
0, otherwise (2)

In order to build a single logic gate, three neurons are
used, two of them operating as the inputs and the other
one as the output, and the synaptic connections between
them are made with regards to their respective connection
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probabilities. The stimulation may be due to spikes from other
neighbouring neurons or can be artificially stimulated using
miniature implantables Wireless Optogenetics Nanonetwork
Devices (WiOptND) [4].

In this work, we use a simple OOK modulation, where a
spike is considered as a bit “1” and its absence as a bit “0” in
a time slot with τ ms. Both inputs, I1 and I2, are stimulated
with spike trains with different inter-spike intervals (ISI). The
models of neurons were kept in their default configuration
except for the threshold for spike initiation that was set to a
very low value of −60 mV for both gate types.

For this paper, we present the design of two logic gate types,
an OR and an AND gate. Five OR and three AND gates were
built for this study with different types of cells but all of them
follow the structure/connection depicted in Fig. 1(c) and their
behaviour is described by their respective truth tables as shown
in Fig. 1(d).

By knowing the type of the gate and the two input spike
trains, it is possible to obtain the expected output, E[Y ], and
then calculate the accuracy of the gate by comparing E[Y ]
with the actual output, Y . The accuracy, A(E[Y ];Y ), is then
defined as the ratio of correct classifications to the total number
of samples classified, thus

A(E[Y ];Y ) =
P1,1 + P0,0

P0,0 + P0,1 + P1,0 + P1,1
, (3)

where PY,E[Y ] is the probability of Y given E[Y ], where
Y&E[Y ] ∈ {0, 1}.

III. RESULTS AND DISCUSSION

In this section, the simulations performed with the models
of neurons downloaded from the Digital Reconstruction of
Neocortical Microcircuitry [5] using the NEURON Simula-
tor [6] are presented. The models are arranged as isolated
cells connected to each other as shown in Fig. 1(c) and do
not represent activities as part of a larger network. The type
of cells include Descending Axon (DAC), Horizontal Axon
(HAC), Small Axon (SAC), Martinotti (MC), Bitufted (BTC),
Double Bouquet (DBC), Bipolar (BP), Large Basket (LBC),
Nest Basket (NBC) and Small Basket (SBC).

In Fig. 2(a), it is possible to verify that different ISI’s do
not represent drastic changes in the accuracy of the AND gate,
where the average accuracy is around 0.353. On the other hand
for the gate OR (Fig. 2(b)), we observe an increase of the
accuracy with the ISI between 5− 11 ms from 0.232 to 1.

In general, Fig. 2 shows that for all gates, an ISI of 8 ms
returns the highest values of accuracy and that the higher
the frequency of firing, the worse the performance of the
gates will be. At the same time, higher ISI’s can decrease
the accuracy considering that to evoke a spike in the output,
the potential summation should increase towards the threshold
in a faster pace than the rate with which the cell goes back to
its resting potential. We highlight this importance to consider
that changes in the parameters of the models may lead to a
change of the gate’s accuracy.

(a) Accuracy for AND gates.

(b) Accuracy for OR gates.

Fig. 2. Accuracy for the AND and OR gates with different ISI’s. AND gates:
(1) MC, NBC and HAC, (2) SBC, MC and SBC, (3) MC, MC and DAC. OR
gates: (1) DAC, SAC and LBC, (2) DBC, BTC and BP, (3) DAC, HAC and
MC, (4) MC, NBC and DAC, (5) DBC, DBC and BP.

IV. CONCLUSIONS

In this paper, we designed OR and AND logic gates
using the engineering of neuronal molecular communication
systems. Our results show how the frequency of firing affects
the accuracy of the neuronal digital logic gates, where a mid-
level ISI demonstrates to be the most appropriate for high
accuracy. For future work, we intend to conduct analysis on
logic circuits composed by several gates with a generalised
approach to fine-tune the system constructed within a cellular
tissue .
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CHAPTER 12

DISCUSSION

This PhD work has investigated neuron-based molecular communications systems supported

by conventional information and communication engineering concepts and metrics, such

as attenuation, channel capacity and propagation delay. Because these systems are so

unique in approaching the stochasticity of the biological dynamics, there is a chance some

challenges that have not even been modelled yet e.g., extremely low propagation speeds and

severely susceptible to thermal noise and drifting, are affecting the performance of those

communication channels. As scientists validate and propose novel models of these biological

processes more efficiently, conventional communication concepts will shift towards a more

accurate theory for information and communication systems. This chapter summarises the

lessons learnt as well as the contributions from the design and analysis of neuron-based

communications systems.
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(a) (b)

Fig. 12.1 Mean and standard deviation for the (a) three AND gates and (b) five OR gates.
Five simulations were performed for each rate and the spiking pattern follows a Poisson
process.

12.1 DESIGN OF NEURON-BASED MOLECULAR COMMUNI-

CATION DEVICES

Several parameters of synaptic communication can be used to influence the weight of a

stimulus and the reliability of the propagation of an action potential. One example would

be the capability of neurotransmitters to influence synaptic conductance values [109]. The

models proposed for the design of logic gates for queue and systems theory analysis of an

arrangement of neurons and neuronal logic gates can be mostly fine-tuned for maximum

gating performance as suggested by Vogels et al [14] who suggested the weakening or

strengthening of synaptic connections lead to a gating behaviour inside a homogeneous

network of neurons. Moreover, the experiments conducted by Goldental et al [13] enforced

stimulations on neuronal circuits within a network of cortical neurons in-vitro. The authors

propose different types of gates, such as XOR and NOT. However, they took advantage of

the propagation delay to control the output of the neuronal logic gate. Nevertheless, proving

biocomputing devices made out of neurons are reaching promising stages of development.
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Circuit BCircuit A Circuit CA

B

A1
A2

Fig. 12.2 (A) Schematic of circuits A, B and C and (B) The connection of AND gates in
cascade to circuit A. A1 refers to the arrangement described by a single AND gate connected
to the output of the circuit A and A2 refers to another AND gate connected to the output of
A1 arrangement, i.e. two AND gates in cascade with circuit A. Analogous nomenclature is
employed for both circuits B, as in B1/B2 and C, as in C1/C2.

Fig. 12.1 shows the performance of the different gate arrangements that were proposed

for AND gates (Fig. 12.1a) and OR gates (Fig. 12.1b). As aforementioned above, many of

the work published in the literature about neuronal logic gates do not account for missed

signals, i.e. spikes that are not passed forward due to effects of the refractory period of a

neuron (refer to Section 2.1 for more detailed information on refractory period). As shown

in Fig. 12.1b, the three AND gates have quite a similar performance although AND 3 is

slightly the best one (refer to Adonias et al. [110] for details on the logic gates). This may

be due to the fact there is only a single way for an AND gate to output a signal, meaning

that this may play a role in decreasing the chances for the gate to inaccurately process the

inputs. On the other hand, OR gates can invoke an output not only when both inputs receive

a stimulus but also when either of them is stimulated. The proposed arrangements differ

between themselves in terms of accuracy when compared to an ideal OR gate and, it is clear

from Fig. 12.1b that OR 2 is the best performing gate.
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Not only is the filtering behaviour suggested as a case study but also the idea of analysing

the neuronal arrangements as a transfer function derived from the Hodgkin-Huxley linear

model corroborates the notion that neurons can help filter out specific frequencies as found in

the literature [104]. The transfer function and the queuing theoretical models help researchers

approach the challenges of modelling neuron-based communication systems in a relatively

simple yet efficient way. The results from this PhD work such as the ones published in

Chapter 7, therefore, suggest that neuronal logic circuits can be used to construct more

complex “bio-electronic” circuits, such as digital filters, capable of filtering abnormal high-

frequency activity which can have many sources including neurodegenerative diseases. The

proposed mathematical framework provides a way to understand how arrangements of

neurons can act as neuronal digital filters. Furthermore, by providing an insight into how the

control of the band-passing frequency could be performed, it is possible that researchers and

scientists on precision pharmacology and drug design could take advantage of those findings

to develop specific pharmaceuticals able to modify parameters of the neuronal logic gates

responsible for its band-passing control. It was demonstrated that by reconfiguring inner

parameters of the filters, e.g. gates that make up the filter, it is possible to, by modifying

the type of filter (Fig. 12.2), shift the intensity with how specific spike firing frequencies are

attenuated on the fly and this adaptation could be tailored to specific tasks performed by the

subject.

Fig. 12.2a shows the three types of the circuit that were built and analysed in [111]. From

circuits A to C, the number of OR gates is decreased; when compared to AND gates, OR

gates are quite permissive as seen in one of our previous studies [110]. Fig. 12.2b shows

the connection of up to two AND gates in cascade with the circuits. Each of the circuits

was analysed with one and two AND gates in cascade, hence the nomenclature of a letter

followed by a number, the letter refers to the type of circuit and the number accounts for how

many AND gates are connected in cascade. If using the same type of gates (OR and AND),
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Fig. 12.3 Parallel between Magnitude (dB) and Accuracy of the circuits with AND gates in
cascade.

by mixing and matching them into different configurations, we should not expect dramatic

changes in the results when compared to the ones presented. However, different types of

gates may strongly influence the accuracy and overall performance of the circuit. The results

for that analysis in terms of magnitude and accuracy for the circuits are shown in Fig 12.3.

The results shown in Fig 12.3 suggest that an increase in the number of cascading gates

will lead to an increase in the attenuation of the signal propagated through the network and

this effect is probably specific to some characteristics of the cell, such as the connection

probability. Hence, the more gates in the cascade, the worse the performance of the circuit in

terms of accuracy. However, when looking from the perspective of filtering high-frequency

firing, each of the circuits performs quite well by attenuating the power of higher frequencies

for more than -20 dB. Even though the ratio keeps fluctuating, with a careful evaluation, the

dip in the accuracy along mid-range frequencies is very subtle in terms of the whole scale,

showing a difference of only around 0.03 on the values of accuracy. The possibility of enforc-

ing a drop in higher frequencies can be beneficial for the treatment of certain diseases such

as epilepsy which is characterised by high-frequency bursts of spike firing [112]. Although

this requires precise characterisation of the neural tissue that would be the “epicentre” of the

seizure-like activity, we do not need to know exactly which cell is malfunctioning. In other

words, those neuronal circuits can be deployed in a network and, with a sufficient number of
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(a) (b)

Fig. 12.4 Simulation of epileptic seizures in a network with 10 neurons (2 neurons per cortical
layer), stimulation performed in cells at layer 2/3. (a) Raster plot of the network with no
gates inserted and natural connections only (top) as illustrated in Fig. 3; and raster plot of the
network with 16 neuronal logic gates (bottom), natural connections are broken where gates
are placed; (b) Mean firing rate in the network as more and more gates are placed within it;
the top graph shows the firing rate of the whole network for all stages as shown in Fig. 13(a);
the bottom graph shows the firing rate for the whole network but only for the seizure stage.

them, it is possible to curb the epileptic activity. This shows the relevance of the research

described in this PhD work.

The previously mentioned attenuating effects can be seen in Fig. 12.4. A small network,

was built for the investigation presented in [110], it contains 10 neurons and the number of

AND gates increases from none to 16 inside the network. The AND gates are suggested

as a potential solution to smooth out high-frequency spike firing. Fig. 12.4a, show how a

stimulation done only in the cells of layer 2/3 behaves as it propagates through other cells in

the same network and the difference is visually clear on the frequency of spike firing between

a network with no gates (top) and a network with 16 gates (bottom). On the other hand, the

mean firing rate (Fig. 12.4b) was also calculated as a function of the number of gates inside

the network. As expected mean firing rate of the network decreases as the number of AND

gates inside the network increases. This corroborates our hypothesis that neuronal logic

gates and, consequently logic circuits, will help to fine-tune the system, providing ways to

improve the performance of the disease therapy using biocomputing approaches. The lessons
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learnt from those analyses reveal a tendency for AND gates to maintain a better accuracy

with the increase of the input frequency compared to OR gates in a relatively large neuronal

logic circuit. Moreover, a queuing-theoretical analysis showed remarkable accuracy when

predicting the output of the gates under different input frequencies. It was also learnt that

our study has demonstrated the fact that each circuit has a preferable frequency band for

maximum efficiency when filtering high-frequency spike firing.

12.2 DEMYELINATION EFFECTS ON A NEURONAL COMMU-

NICATION CHANNEL

Myelin sheath is an integral part of some neurons as it provides insulation to the axon and

reduces attenuation on the propagation of action potentials through the axonal pathway.

The demyelinating disease is a strong factor that leads to other types of neurodegeneration

such as multiple sclerosis. One of the causes of demyelinating disease occurs indirectly

and it needs other processes, such as immune system responses, to kick-start it. This is

the case of viral infections, some viruses can cross the blood-brain barrier and infect the

nervous system leading to an immune response that triggers the release of cytokine storm

to fight the infection but it can damage healthy tissues, such as the myelin sheath, in the

process [81]. The literature has been hinting at this hypothesis, but more in-depth studies

are needed because viruses are usually studied from the perspective of their main symptoms.

Demyelination can also be induced by known chemicals, this is a process widely used by

wet-lab experimentalists and aims at facilitating the analysis of the effects of demyelination

and remyelination.

This thesis investigated new computational simulation models to understand how cytokine

storms can affect and destroy myelin sheaths and how this affects the communication as

well as the effects of chemicals such as lysolecithin. The work described in this thesis does
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(a) Action potential propagation on an axon fully myelinated.
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(b) Action potential propagation on an axon with half of its normal
myelination levels.

Fig. 12.5 Parallel for action potential propagations between a fully myelinated and a partially
(50%) demyelinated axon.

not focus on variations of the input process. The objective of the analysis is, basically, to

understand the effects of demyelination on axonal signal propagation and consequences to

the communication in a bipartite synapse and relatively larger networks of neurons. The

main difference between both causes of demyelination would be the time they take to reach

full demyelination. From a cytokine storm perspective, even after the viral infection is

cleared from the nervous system, it may take about a few weeks for the demyelination to

settle [81]. On the other hand, the use of chemicals such as lysolecithin (LPC) [113] can

offer a more timely controlled way of evaluating the demyelinating process, in other words,

LPC can fully demyelinate a slice culture in about 24 hours and then the remyelination

process should naturally take a couple of weeks. However, it never comes back to its

original state (full myelination). The results presented in this thesis have shed light on the

relevance of modelling external agents such as cytokine storms and chemicals for a more

detailed and accurate analysis of neuron-based molecular communication systems. Along

with wet-lab data provided by collaborators, it was possible to understand the dynamics of the

demyelination on the propagation of action potentials on neuronal compartments (Fig. 12.5),

its influence on the synaptic connection and the effects on a larger neuronal network. This

collaboration was very fruitful as it helped make sense of the computational results presented

in the paper, it provided background information on the speed with which the demyelination

and remyelination occur.
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Furthermore, the empirical calculation of the myelination index shed light on a more

accurate fine-tuning of the Hodgkin-Huxley model. This collaboration was crucial for

preliminary validation of the results and, consequently, a better understanding of wet-lab

procedures for the collection of data. The results match other studies that show that action

potentials are broadened and the conduction velocity supported by the saltatory nature of the

conduction of neuronal potential is prone to failure as the myelin sheath gets damaged [114–

116]. This phenomenon can be observed as half of the myelination (Fig. 12.5b), which already

present quite a distinct visual attenuation on the potential and on the peak time when compared

to a healthy fully-myelinated neuron (Fig. 12.5a). This is an interesting finding for the field of

molecular communications as neurotransmitters are released also as a function of the action

potentials [117] and with attenuation and delay caused by demyelination, the information

that is being transferred can be compromised. For example, the intersymbol interference can

be minimised with proper modulation of molecules such as neurotransmitters [118]. In other

words, by modulating the quantity of molecules diffused in the medium, we are applying a

similar approach to pulse-width modulation, thus, leading to a lower intersymbol interference.

The lessons learnt reveal that our analysis corroborates findings from literature that indicates

the neuronal communication may be affected by pro-inflammatory immune response inside

the brain. Also, the proposed model for demyelination and remyelination show a satisfactory

level of effectiveness when combining wet lab and digital simulation platforms that can be

used to help design drugs for re-myelination and its relation to axonal signal propagation and

subsequent neuronal communication.
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CONCLUSION

Several molecular communication systems have been studied in the past few years, e.g. neuro-

spike communication, and even though only a small number of those studies focused on the

conceptualisation and design of synthetically engineered devices, it is expected that much

of this knowledge will soon reach development stages fueled by interdisciplinary advances

in nanotechnology, biomedical engineering and synthetic biology. These systems can be

presented as a biocompatible interface for a more reliable biological communication system.

They would also have the ability to influence the communication at the nanoscale where

natural cells interact with bio-nanomachines either reacting to the environment (e.g. cytokines

released to fight infections) or for cooperation aiming towards better efficiency. This PhD

thesis followed the premise that the union of molecular communications and synthetic biology

will allow the communication between neurons (natural and artificial) by manipulating their

electrochemical signalling. Neuronal signalling is a short-range communication process

between neurons and, sometimes involves non-neuronal cells, e.g. glial cells. Therefore, this

theses provided a framework that could lead further study and development of synthetically

engineered systems capable of interfacing with natural and other artificial brain cells. This

approach could help pave the way for more robust and biologically compatible treatments

against neurodegeneration with an increased efficiency.
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Neuronal logic gates have been proposed in the literature as one of the building blocks of

more complex neuronal circuits. Although we explored three-neuron arrangements for the

construction of neuronal logic gates of types AND and OR, it could be the case that a higher

number of neurons will be necessary for other types of logic gates. Also, depending on which

parameter is under analysis, even AND and OR gates may demand an arrangement with

more than three neurons. A framework based on queueing-theoretical concepts has taken

into account the time of propagation and arrival of the action potential at the presynaptic

terminals of the “output” neuron aiming to predict the neuronal gate performance once

it is positioned inside a neuronal network. Thus, this queueing-theoretical analysis could

eventually allow experimentalists to understand the impacts of a synthetically engineered

neuronal gate even before deployment in vivo. A similar approach was applied for the work

on filtering high-frequency spike firing, where logic gates constructed from neurons were put

together to build a more complex circuit capable of filtering specific frequency bands based

on re-arranging logic gates. In this case, our neuronal filter is submitted to traditional circuit

modelling as a linear system and each neuronal compartment model described its properties

such as ionic channels and synaptic weight. These properties are crucial for the evaluation of

how accurately a neuronal logic gate can output an action potential based on its inputs. The

proposed gates showed different levels of accuracy which were influenced by not only the

neuronal properties but also the spiking rate at the input and, potentially, any “noise” coming

from other synaptic processes. The study also observed the ability of AND gates to help

smooth out high frequency firing at its inputs which can imply novel treatment of epilepsy.

This is because an AND gate only sends an output if there are simultaneous stimuli at its

inputs. This way, even if the neurons at the input are under seizure, only an unlikely syncing

would “minimise” the filtering efficiency of the gate.

As non-neuronal cells also impact the communication and propagation of neuronal infor-

mation, so do non-neuronal processes of the body such as immune response to infections
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caused by external agents. In this thesis, the effects of viral infections have been inves-

tigated and among many of the neurodegenerations, it may directly or indirectly cause.

Demyelination of neurons is one example. This is because, to fight the infection, cytokine

storms that are pro- and anti-inflammatory should be released. For that reason, it has been

found that pro-inflammatory cytokines can damage healthy tissue and compromise neuronal

communication as myelin sheaths get damaged in the process. Our proposed model of this

phenomenon built on top of the current knowledge for known coronaviruses and extended

the analysis to the novel coronavirus (SARS-CoV-2) which also indicated the potential of the

virus to cause even further damage to the nervous system. Further progressing with studies

on demyelination, this thesis also discusses some modelling of LPC-induced demyelination

that built on top of wet-lab experimental data. A myelination index metric was coupled to the

well known Hodgkin-Huxley model and the analysis showed consistency with the literature.

The model also provided an opportunity for experimentalists to speed up their results using

a wet-lab-validated model that can easily be fine-tuned for specific analysis. The results

showed a heavy influence on the propagation and potential of the signal travelling down a

partially myelinated axon although the relationship is not entirely linear. The lower band of

the indices presented subtle changes up to the point it increased more linearly in the middle

band and it started to plateau again on the upper band of the myelination indices. These

results provided an interesting behaviour in how demyelination and remyelination affect

neuronal communication as it is not necessary to reach the lowest index point to have a heavy

attenuation on the signal and, analogously, it is not necessary to reach the highest index point

to have a satisfactory conduction behaviour.

13.1 FUTURE WORKS

There is a long way before we see the everyday use of synthetically designed molecular

communication systems for biomedical applications, but the contributions of this thesis is a

124



CONCLUSION

stepping stone towards that vision. In the following, future works based on the presented

work are shown.

13.1.1 IMPACTS OF NON-NEURONAL CELLS IN THE COMMUNICATION

BASED ON ACTION POTENTIAL AND SYNAPSES

It is well known that non-neuronal cells, such as astrocytes, can influence the communication

between neurons. Moreover, the use of other cells in the nervous system can help identify

points for improvement in the models as more details are being inserted in the model to

account for a rich cellular environment. For example, a tripartite synapse can offer an

alternative way of controlling the release and diffusion of neurotransmitters that can impact

the propagation of action potential over the network. Non-neuronal cells also include the

performance of synthetically engineered neurons, especially in terms of biocompatibility and

energy efficiency when interfacing with natural neurons.

13.1.2 VALIDATION OF COMPUTATIONAL MODELS WITH WET-LAB EX-

PERIMENTS

It is only natural for a specific theoretical approach to plateau in terms of how it evolves into

more robust models. For that reason, wet-lab experimentalists must find their way to validate

the models. The validation may require some fine-tuning or, least likely, drastic changes to

the proposed model. This will surely require collaboration between biologists working in the

field of neuroscience, synthetic neurobiologists that can program neurons into a computing

element, as well as researchers from embedded nanotechnology that could proceed with the

implementation of a cell into a chip and then conduct tests that will help validate the model.

125



CONCLUSION

13.1.3 REAL IMPLEMENTATION OF NEURON-BASED MOLECULAR COM-

MUNICATIONS

The numerical and computational simulation analysis performed in this thesis was put

together and adapted from other works in the field with different goals compared to the

investigation conducted in this thesis. So, the next step has the potential to be the design

and development of proof-of-concept systems capable of validating, even if partially, the

theoretical models which could most likely lead to prototypes for future novel devices.

Collaborations with other professionals from different fields will most likely be required

for the successful implementation of real neuron-based devices. As molecular communica-

tions is a highly interdisciplinary field, the process from research to safe use and deployment

may benefit from, for example, biologists, engineers, chemists molecular microbiologists,

pharmacists and physicians.

13.1.4 APPLICATION OF NOVEL DISEASE TREATMENT METHODS USING

NEURONAL LOGIC CIRCUITS

Even with the current advancements of medicine and biomedical engineering, many of the

tools used for the treatment of disease in hard-to-reach places inside the body still poses

numerous challenges for the patient, such as bulky equipment, reduced biocompatibility and

relatively high maintenance that compromise the patient’s lifestyle. For that reason, scientists

and researchers have been working on tackling those challenges to develop novel approaches

to neurodegeneration based on the concept of neuronal logic gates and circuits.

These circuits should have improved compatibility with the biological medium and

demand much less outside maintenance as it could be tailored to a specific activity performed

by the patient, such as being asleep or awake, with the use of precise drug delivery or

artificial stimulation for example via ultrasound or light stimuli. These novel methods should
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account for long-term treatments against neurodegeneration and, probably pave the way for

techniques able to enhance the performance of cognitive abilities.
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